Skip to the content.

Thomas J. Vandal, Ph.D.

Home Publications Projects

photo
Thomas J. Vandal, Ph.D.
Research Scientist
NASA Ames Research Center
Bay Area Environmental Research Institute
Moffett Field, CA 94035

vandal@baeri.org
thomas.vandal@nasa.gov


My research is at the intersection of machine learning, computer vision, Earth science, and high-performance computing. I am interested in machine learning applications to our ever growing datastores of spatio-temporal Earth science observations, forecasts, and projections for climate mitigation and adaptation. Recent projects have included developments of novel deep learning methods for atmospheric wind, climate downscaling, emulation, virtual sensing, and cloud tracking.

Bio

Thomas is a research scientist at the NASA Ames Research Center and Bay Area Environmental Research Institute within the NASA Earth eXchange (NEX) in Mountain View, CA. He is the Principle Investigator (PI) of a NASA ROSES grant studying optical flow methodologies for tracking atmospheric motion in satellite imagery. Thomas earned a Ph.D. in Interdisciplinary Engineering from Northeastern University in 2018 while working in the Sustainability and Data Sciences Lab advised by Auroop R. Ganguly. During graduate school his research won runner-up best paper award at SIGKDD 2017, outstanding graduate researcher at Northeastern University in 2018, and served as an elected student member of the committee on Artificial Intelligence Applications to Environmental Science for the American Meterological Society (AMS). Prior to graduate school he worked at startups in the Boston area, including the MIT Media Lab spin-out Affectiva. He completed his bachelors in mathematics at the University of Maryland College Park in 2012.

Recent Work

(September 2021) Presented at the The 3rd NOAA Workshop on Leveraging AI in Environmental Sciences, slides.

(August 2021) Paper titled “Temporal Interpolation of Geostationary Satellite Imagery With Optical Flow” published in IEEE TNNLS Special Issue on Deep Learning in Earth and Planetary Geosciences.

(August 2021) Presented at the Asia Oceania Geosciences Society (AOGS).

(June 2021) Paper titled “Spectral Synthesis for Geostationary Satellite-to-Satellite Translation” published in IEEE TGRS Paper.

(August 2020) Awarded best spotlight presentation at 1st ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems.

(May 2020) Paper accepted to KDD 2020 research track titled “High-Dimensional Similarity Search with Quantum-Assisted Variational Autoencoder” Paper

(May 2020) NASA ROSES proposal selected by to develop optical flow methods for tracking atmospheric motion. Selections.

(May 2020) Journal paper on Data science and food security published in Frontiers Sustainable Food Systems Paper.

Selected Publications

Vandal, T. & Nemani, R. (2021). “Optical Flow for Intermediate Frame Interpolation of Multispectral Geostationary Satellite Data”. IEE Transactions on Neural Network and Learning Systems (TNNLS). Special issue on Special Issue on Deep Learning for Earth and Planetary Geosciences. [Paper] [Code] [Video].

Vandal, T., McDuff, D., Wang, W., Duffy, K., Michaelis, A., & Nemani, R. (2021) “Spectral Synthesis for Geostationary Satellite-to-Satellite Translation”. IEEE Transactions on Geoscience and Remote Sensing. [Paper] [Code]

Vandal, T. & Nemani, R. (2020). “Optical Flow for Intermediate Frame Interpolation of Multispectral Geostationary Satellite Data”. In Proceedings of 1st ACM SIGKDD Workshop on Deep Learning for Spatiotemporal Data, Applications, and Systems (DeepSpatial ’20). [Paper]

Gao, N., Wilson, M., Vandal, T., Vinci, W., Nemani, R., & Rieffel, E (2020). “High-Dimensional Similarity Search with Quantum-Assisted Variational Autoencoder,” Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Research Track, 16% acceptance rate). [Paper]

Vandal, T., Kodra, E., Ganguly, S., Dy, J., Nemani, R., & Ganguly, A (2018): “Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning,” Proceedings of the 24rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 1663-1672. (Research Track, 18% acceptance rate) [Paper], [Code].

Vandal, T., Kodra, E., Ganguly, S., Michaelis, A., Nemani, R., & Ganguly, A. (2017). “DeepSD: Generating high resolution climate change projections through single image super-Resolution,” KDD 2017, Proceedings of the 23rd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 1663-1672. (Runner-Up BEST PAPER Award in Applied Data Science Track, 9% oral acceptance rate). [Paper] [Code].

Vandal, T., E. Kodra, and A. Ganguly, “Intercomparison of Machine Learning Methods for Statistical Downscaling: The Case of Daily and Extreme Precipitation.” Theoretical and Applied Climatology. September 2018. [Paper].

Vandal, T., “Statistical Downscaling of Global Climate Models with Image Super-resolution and Uncertainty Quantification”, 2018. Northeastern University. [Dissertation].