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ABSTRACT

High-resolution probabilistic projections of precipitation and temperature under climate change are

crucial for stakeholders to make well-informed decisions in mitigating and adapting to more intense,

longer duration, and more frequent extreme weather events. General circulation models (GCMs)

provide us with the data to study climate change at the continental spatial scales, but are too coarse

for local adaption. Furthermore, ensembles of multiple models, initial conditions, and emission tra-

jectories must be harnessed for well quantified probabilistic estimates. Statistical downscaling, an

approach that learns a functional mapping between low- and high-resolution GCMs, can be used to

generate high-resolution ensemble projections in a computationally efficient manner. However, this

process exacerbates, at a local scale, uncertainties inherently found in GCMs. Hence, it is crucial for

our statistical downscaling methods to incorporate and quantify uncertainties, including both epis-

temic, or parameter misunderstanding, and aleatoric, or observational, uncertainties. In this work,

we present a Bayesian deep learning and image super-resolution approach for statistical downscal-

ing using discrete-continuous and non-normal likelihoods. Promising results for downscaling daily

precipitation in the contiguous United States measured on predictive accuracy and uncertainty quan-

tification are presented. Future work on stacking Bayesian deep learning networks and harnessing

ensembles of high-resolution GCMs is discussed.
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Chapter 1

Introduction

The sustainability of infrastructure, ecosystems, and public health depends on a predictable and

stable climate. Key infrastructure allowing society to function, including power plants and trans-

portation systems, are built to sustain specific levels of climate extremes and perform optimally in

it’s expected climate. Studies have shown that the changing climate has had, and will continue to

have, significant impacts on critical infrastructure [35, 87]. Furthermore, climate change is having

dramatic negative effects to ecosystems, from aquatic species to forests ecosystems, caused by in-

creases in greenhouse gases and temperatures [118, 88, 44]. Increases in frequency and duration of

heat waves, droughts, and flooding is damaging public health [42, 31].

Global Circulation Models (GCMs) are used to understand the effects of the changing climate

by simulating known physical processes up to two hundred years into the future. The computational

resources required to simulate the global climate on a large scale is enormous, limiting models to

coarse spatial and temporal scale projections. Most often, the critical systems society depends on

exist at the regional and local scale, where projections are most limited. Downscaling techniques

are applied to provide climate projections at finer spatial scales, exploiting GCMs to build higher

resolution outputs.

Statistical and dynamical are the two classes of techniques used for downscaling. The first

appraoch, dynamical downscaling are based on Regional Climate Models (RCMs) which embeds

sub-grid parameters and processes within boundary conditions of coarse resolution GCMs. This is

particularly useful for better simulating convective and extreme precipitation events [62], which

are often underestimated in statistical downscaling [12]. However, RCMs are typically sensitive to
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their boundary conditions which can dramatically change the results [27]. For this reason, in order

to obtain credible projections, multi-initial condition ensembles should be considered. However, a

limitation of RCMs is it’s high computational requirements that limits the use of multi-model and

multi-inital condition ensembles.

The second approach, statistical downscaling (SD) aims to learn a statistical relationship be-

tween coarse scale climate variables and high resolution observations, which we will discuss in

further depth in the following sections. SD is commonly applied to both RCMs, most often for bias

correction, and GCMs. A key advantage of SD is it’s computational efficiency and ability scale

to climate model ensembles. However, GCMs have difficulty modeling convective precipitation,

hence the application of SD to GCMs is expected to not well capture extremes [68]. In contrast,

Ahmed et al. compared six statistically downscaled GCMs and four RCMs to a regional impact

assessment of temperature and precipitation over the northeast United States and found no consid-

erable differences in results between SD and using RCMs [3]. This suggests that SD directly from

GCMs is sufficient over our region of interest.

1.1 Statistical Downscaling

Many statistical approaches can be used to relate large-scale climate processes to local-scale pro-

jections which can be grouped into three main categories: Perfect Prognosis (PP), Model Output

Statistics (MOS), and Weather Generators (WG) [95, 81]. Regression and analog methods are cat-

egorized as PP approaches, which rely on large-scale observational data, often reanalysis datasets,

as well as local-scale observations. On the other hand, MOS approaches rely only on the local-

scale observations as well as the climate model outputs, either GCMs or RCMs. Quantile mapping

and bias correction techniques are commonly applied MOS approaches in hydrological impact stud-

ies [125]. PP and MOS approaches can also be used together to improve predictability and statistical

coherence. Lastly, WG are used to stochastically generate time series and spatial fields that resem-

ble those observed. For instance, WG are often applied to better understand future extreme weather

events [100].

As discussed in Maraun et al., PP approaches comprise of four key steps including prediction

selection and transformation followed by a statistical model and model selection [81]. Selecting the
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well-informed large-scale climate predictors that well represent the local-scale variable of interest is

crucial to credible downscaling. The climate predictors of interest can be selected using knowledge

of physical processes as well as locating those highly correlated with the predictand. The means

that the selected predictors should be well simulated by GCMs to ensure statistically credible future

projections. Hence, a statistical assumption that our predictors are related to the predictand is made.

Predictors selected for statistical downscaling are often high dimensional because the features

extracted for each climate variable occur on a grid. With many variables and vertical pressure

levels, as we’ll discuss below, the total number of features can be in the thousands. Many ap-

proaches have been developed for high-dimensional feature selection and regression. Transforma-

tions from a high- to low-dimensional feature space are often applied such as principle component

analysis [47, 107, 36]. Benestad et al. found that using principle component analysis improved

performance while reducing sensitivity to the predictor domain when downscaling station data [9].

Rather than compressing all the features, some of which may not have relevant dependencies with

the predictor, one can select a subset of these features using dependency measures. A few methods

for features selection include correlation analysis [122], sparse regression [110, 43], and Bayesian

models [24]. A combination of feature selection and transformation can also be applied. In this

work, we compare multiple approaches to reduce dimensionality through both spare regression and

principle component analysis.

Given the set of features, we can define a statistical relationship to estimate the local-scale cli-

mate variable by learning from an observational dataset, either station based or gridded. Regression

methods are most commonly used ranging in complexity, interpretability, and scalability. Linear

and Generalized Linear models are applied most often and provide the basis of automated statistical

downscaling [46]. Non-linear approaches, such as support vector machines [36] and artificial neural

networks [105, 21], are often applied to capture more variability in the data but often overfit. To

reduce overfitting, in both linear and non-linear approaches, regularization techniques can simply

the model by utilizing regularization terms, such as l1 or l2 penalties. Method of analogs is also used

for SD, which is a nearest neighbor approach that find the k most similar observed examples given

a new low-resolution projection [49, 90]. However, in this work we focus on regression approaches

as they are more closely related to corresponding machine learning techinques.

Alternatively, MOS techniques use statistical attributes of observed climate variables but do not
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necessarily rely on lower resolution observations. In addition, the climate variable being downscal-

ing should be well simulated by GCMs to ensure credibility. In particular, precipitation is not yet

well simulated and should be used cautiously in practice [97]. Bias Correction Spatial Dissagre-

gation (BCSD), developed specifically for downscaling precipitation and temperature from GCMs,

is a well studied MOS method that uses quantile mapping on the GCM followed by spatial scaling

[125]. Though widely applied, bias correction approaches have been critized for generalizing into

the future and magnifying model errors that can cause impausible projections [80].

The selection of SD method is largely dependent on the use case and data availibility. The needs

of the user depending on the application, which can vary between climate variables, seasons, ex-

treme events, temporal variability and scales, spatial coherence, physical consistency, and resilience

to non-stationarity [81]. Characteristics and intercomparison studies are relied on for method se-

lection. For instance, Burger et al. presented an intercomparison on five state-of-the-art methods for

downscaling temperature and precipitation at a daily temporal resolution to quantify extreme events

[12]. Another study by Gutmann et al. presented an intercomparison of methods on daily and

monthly aggregated precipitation [41]. More recently, Maraun et al. developed the VALUE frame-

work to objectively compare SD approaches using marginal, temporal, spatial, and multi-variate

statistical indices [82]. One study by Gutiérrez et al., leveraging the VALUE framework, compare

PP, MOS, and WG downscaling methods using all four categories of statistical indices and found

downscaling methods generally reduce model bias but no method is superior. Similarly, Hetrig et al.

used the VALUE framework to extreme events in europe and found large variations in skill between

PP approaches. This study using marginal statistical attributed found in the VALUE framework to

compare machine learning approaches and extend on these previous studies.

1.2 Machine Learning in Statistical Downscaling

1.2.1 Multi-task Learning for Statistical Downscaling

Traditionally, SD has focused on downscaling a locations independently without accounting for

clear spatial dependencies in the system. Fortunately, numerous machine learning advances may

aid SD in exploiting such dependencies. Many of these advancements focus on an approach known

as multi-task learning, aiming to learn multiple tasks simultaneously rather than in isolation. A
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wide variety of studies have shown that exploiting related tasks through multi-task learning (MTL)

greatly outperforms single-task models, from computer vision [131] to biology [66]. Consider the

work presented by [28] in which increasing the number of tasks leads to more significant feature

selection and lower test error through the inclusion of task relatedness and regularization terms in

the objective function. MTL has also displayed the ability to uncover and exploit structure between

task relationships [133, 18, 4].

Recently Goncalves et al. presented a novel method, Multi-task Sparse Structure Learning

(MSSL) [39] and applied it to GCM ensembles in South America. MSSL aims to exploit sparsity

in both the set of covariates as well as the structure between tasks, such as set of similar predictands,

through alternating optimization of weight and precision (inverse covariance) matrices. Goncalves

et al. results showed significant improvements in test error over Linear Regression and Multi-model

Regression with Spatial Smoothing when applied to climate model ensembles over South America.

Along with a lower error, MSSL captured spatial structure including long range teleconnections

between some coastal cities. The ability to harness this spatial structure and task relatedness within

a GCM ensembles drives our attention toward MTL in other climate applications.

Consider, in SD, each location in a region as a task with an identical set of possible covariates.

These tasks are related through strong unknown spatial dependencies which can be harnessed for

SD projections. In the common high dimensional cases of SD, sparse features learned will provide

greater significance as presented by [28]. Furthermore, the structure between locations will be

learned and may aid projections. MSSL, presented by [39], accounts for sparse feature selection

and structure between tasks.

1.2.2 Deep Learning for Statistical Downscaling

In the past years, interest in data science and machine learning has drastically increased correspond-

ing to higher performing, more advanced, methods. The vast majority of the state of the art work

has been developed by researchers in the domains of computer vision, speech recognition, and nat-

ural language processing. The computer vision applications are vast, ranging from medical imaging

to self driving cars. Methods developed in this area focus on spatial dependencies within images,

temporal dependencies in consecutive images (eg. videos), dimensionality reduction, and others.

Developments in speech recognition and natural language processing often build off each other, due
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to their temporal structure. The high dimensionality in all of these datasets continue to provide

challenges, leading to solutions which may aid in climate problems.

In particular, Convolutional Neural Networks (CNNs) are a specific deep learning architec-

ture developed to extract spatial information from images by using kernel filters [71]. CNNs have

been succussfully applied to a variety of problems including image recognition [70], image super-

resolution [26], and image segementation [94]. Earth science datasets, such as climate model out-

puts and satellite based observations, are often interpreted as a visual representation just like images.

Hence, CNNs are a natural fit to the spatio-temporal data found in earth science datasets.

The remainder of this dissertation consists of for major parts. First, we compare a set of ma-

chine learning approaches to traditional statistical downscaling approaches. Second, a new ap-

proach to statistical downscaling using image super-resolution which we call DeepSD is presented.

Third, DeepSD is extended to incorporate uncertainty quantification using Bayesian Deep Learning.

Lastly, we conclude and discuss future research directions.
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Chapter 2

Intercomparison of Machine Learning

Methods for Statistical Downscaling: The

Case of Daily and Extreme Precipitation

In this study we aim to compare traditional statistical downscaling approaches, BCSD, Multiple Lin-

ear Regression, Lasso, and Support Vector Machines, against new approaches in machine learning,

Multi-task Sparse Structure Learning and Autoencoder Artificial Neural Network (AEs). During

experimentation we apply common training architectures as part of the automated statistical down-

scaling framework. Results are then analyzed with a variety of metrics including, Root Mean Square

Error (RMSE), bias, skill of estimating underlying distributions, correlation, and extreme indices.

2.1 Statistical Downscaling Methods

In this section, we describe the application of five PP methods, one MOS, and a combination

MOS+PP. In particular, the methods focus downscaling of daily precipitation. Regression constants

are ignored to simplify notation.
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2.1.1 PP Approaches

As discussed above, machine learning methods are often are well suited for PP downscaling for

both regression tasks and feature selection. In particular, to downscale daily precipitation, it is

advantageous to use a model that first estimate the existence of precipitation and apply a regression

if needed, as applied in the Automated Statistical Downscaling (ASD) framework[[46]]. Such a

model can be defined as:

ŷ(X) =


0, if g(X) < 0.5

f(X), otherwise
(2.1)

where gk(X) = p(yk > 0|X) such that predictors X ∈ RN×d and precipitation labels yk ∈ RN at

location k of K with N samples and d covariates. The following five subsections presents methods

based on this framework with varying classification and regression models.

Ordinary Least Squares with PCA (PCAOLS)

Linear models are widely used in statistical downscaling due to their simplicity and interpretability

[[122, 46]]. However, linear models will still overfit high-dimensional regression tasks where d >>

N . Principle Component Analysis, which applies an orthogonal transformation of the feature space

to ”components”, is used to reduce the dimensionality of the predictors [[123]]. More specifically,

we select the minimum number of components that capture 98% (c0.98) of explained variability in

the feature space. We denote these principle components as X̄0.98.

A logistic regression is used for classifying the occurrence of precipitation is defined and opti-

mized as:

g(X) =
1

1 + e−Xα
(2.2)

α̂ = argmin
α

( N∑
k=1

log(1 + e−yg(X))
)

(2.3)

where α represents the parameter coefficients at grid point k. Similarly, a linear regression for

precipitous days is written and optimized as:

f(X) = Xβ (2.4)
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β̂ = argmin
β

(
‖ y − f(X) ‖22) (2.5)

with parameters β. Plugging these into Equation 2.1 with input X̄0.98 gives us our first PP model.

Elastic-Net (ELNET)

Rather than transforming the entire feature space, as done with PCA, we can benefit by selecting

a subset of features that explain variability in y. Sparsity constraints can be placed on the feature

space to reduce or eliminate the influence of covariates which do not affect the output. Lasso is

a widely used method that uses an L1 norm sparsity constraint to enforce the coefficients of non-

influential covariates to zero [[110]]. Similarly, Ridge regression uses an L2 norm to produce a

similar effect [[54]]. Elastic-Net, which we will apply in this study, uses a linear combination of L1

and L2 norms[[135]]. The parameters of the ELNET are learned using the following optimization

objective:

β̂ = argmin
β

(
‖ yk − f(X;β) ‖22 +λ1 ‖ β ‖1 +λ2 ‖ β ‖22

)
(2.6)

TheL1 norm forces uninformative covariate coefficients to zero while theL2 norm enforces smooth-

ness while allowing correlated covariates to persist. Cross-validation is applied with a grid-search

to find the optimal parameter values for λ1 and λ2. High-dimensional Elastic-Net is much less com-

putational than stepwise regression techniques and most often leads to more generalizable models.

A similar approach is applied to the classification step by using a logistic regression with an L1

normalization term:

β̂ = argmin
β

( N∑
i=1

log(1 + e−yig(Xi)) + λ1 ‖ β ‖1
)
. (2.7)

Previous studies have considered the use of Lasso for SD [[43]] but to our knowledge, none have

considered Elastic-Net.

Multi-task Sparse Structure Learning (MSSL)

Recent work in Multi-task Learning aims to exploit structure in the set of predictands while keeping

a sparse feature set, much like Lasso and Elastic-Net. Multi-task Sparse Structure Learning (MSSL)
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in particular learns the structure between predictands while enforcing sparse feature selection [[39]].

Goncalves et al. presented MSSL’s exceptional ability to predict temperature through ensembles of

GCMs while learning interesting teleconnections between locations [[39]]. Moreover, the general-

ized framework of MSSL allows for implementation of classification and regression models.

In the case of downscaling, each of the K locations in space are tasks in our machine learning

model which are learned simultaneously. This is contrary to the other PP approaches that train

models per location independently. We use the notation defined above and denote our predictand

Y ∈ Rn×K and regression coefficients β ∈ Rd×K . Furthermore, we define an inverse precision

matrix, Ω ∈ RK×K , to quantify similarity between tasks. As proposed in [[39]], we write minimize

the following objective:

As proposed in [[39]], optimization over the precision matrix, Ω, is defined as

min
β,Ω�0

{
1

2

K∑
k=1

‖ Xβk − Yk ‖22 −
K

2
log|Ω|+ Tr(βΩβT ) + λ ‖ Ω ‖1 +γ ‖ β ‖1

}
. (2.8)

The L1 regularization parameters λ and γ enforce sparsity over Ω and β. The trace operation affects

the rows of β and enforces similarity. Alternating minimization is applied to (2.8)

1. Initialize Ω0 = Ik, β
0 = 0dXk

2. for t=1,2,3,.. do

βt+1|Ωt = min
β

{
1

2

K∑
k=1

‖ Xkβk − Yk ‖22 +Tr(βΩβT ) + γ ‖ β ‖1
}

(2.9)

Ωt+1|βt+1 = min
Ω

{
Tr(βΩβT )− K

2
log|Ω|+ λ ‖ Ω ‖1

}
(2.10)

2.9 and 2.10 are independently approximated through Alternating Direction Method of Multipliers

(ADMM). Furthermore, by assuming the predictors of each task is identical (as it is for SD), 2.9 is

updated using Distributed-ADMM across the feature space [[10]].

A nearly identical model using a logistic regression can be optimized as:
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min
α,Ω�0

{
1

2

K∑
k=1

( N∑
i=1

log(1 + e−yig(Xi))
)
− K

2
log|Ω|+ Tr(αΩαT ) + λ ‖ Ω ‖1 +γ ‖ α ‖1

}
(2.11)

where α denotes the model parameters. As we can see, MSSL enforces similarity between rows of

β by learning the structure Ω. For example, two locations which are nearby in space may tend to

exhibit similar properties. MSSL will the exploit these properties and impose similarity in their cor-

responding linear weights. By enforcing similarity in linear weights, we are encouraging smooth-

ness of SD projections between highly correlated locations. L1 regularization over β and Ω jointly

encourages sparseness and does not force structure. The parameters encouraging sparseness, γ and

λ, are chosen from a validation set using the grid-search technique. These steps are applied for both

regression and classification.

Support Vector Machine Regression with PCA (PCASVR)

Ghosh et al. introduced a coupled approach of PCA and Support Vector Machine Regression (SVR)

for statistical downscaling [[37, 36]]. The use of SVR for downscaling aims to capture non-linear

effects in the data. Identical to the MLR model, we select components that capture 98% (c0.98) of

explained variability as inputs to the SVR. SVR is used to define the transfer function between the

principle components and observed precipitation. Given a set of covariates (the chosen principle

components) X̄0.98, the support vector regression is defined as [[103]]:

f(x) = β0 +

N∑
i=1

βix
T
i x (2.12)

with parameters βi > 0. The support vectors are selected during training by optimizing the number

of points from the training data to define the relationship between then predictand (y) and predictors

(X) using a hinge loss:

α̂ = argmin
α

(1

2
‖W ‖22 +C

N∑
i=1

max(0, |yi − f(xi)| − ε)
)

(2.13)
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Figure 2.1: Left) The deep autoencoder architecture used to pretrain neural network. Right) The
pretrained encoder is fine-tuned for a supervised task.

where parameters C and ε are set during training, which we set to 1.0 and 0.1 respectively, corre-

sponding to regularization and loss sensitivity. A linear kernel function is applied to limit overfitting

to the training set. Furthermore, support vector classifier was used for classification of rainy versus

non-rainy days.

Autoencoder Networks (AE)

Artificial Neural Networks (ANN) have been widely applied to SD with mixed results [[105, 98,

12]], to name a few. In the past, ANNs had difficulty converging to a local minimum. Recent

progress in deep learning has renewed interested in ANNs and are beginning to have impressive

results in many applications, including image classification and speech recognition [[70, 50, 8]].

Recent success of deep learning can be attributed to it’s ability to learn high-level abstract represen-

tations which generalize across examples. Autoencoder Networks (AEs) present a straightforward

architecture to learn abstract representations by training a neural network to predict the input with

a bottleneck layer where the number of hidden units is lower than the input dimension [[51]]. Once

trained, the middle layer (ie. bottleneck) will contain a lower rank representation of the input data.

The encoder layers of the autoencoder network can then be used to initialize a supervised neural

network. Hinton and Salakhutdinov show that autoencoders separate the feature space more effec-

tively than PCA on three datasets including handwritten digits, document categories, and human

faces [[51]].

This approach can be used for SD by training an autoencoder to learn a low-rank approximation
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of the input, much like the PCA implementations above. The learned autoencoder is then used to

initialize a neural network extended with an output layer. Two supervised neural networks are then

trained, one for classification using a sigmoid cross entropy loss and a second for regression using

a euclidean loss. In our application, there are 8835 features which guides the selected architecture

with hidden layers of size 1000 and 200 units each, respectively (See Figure 2.1). Each layer is

connected by rectified linear units (ReLu). The bottleneck of 200 units is selected to correspond to

a similar number of components selected by PCA. In both supervised networks, the 200 units are

densely connected to each high resolution location, applying a sigmoid activation for classification.

The learned representation from the autoencoder is fine-tuned to learn a more useful representation

for predicting precipitation.

For training, we use the Adam Optimizer [[67]] with a learning rate of 1e − 4 for 1000 epochs

and a batch size of 100 examples. During training dropout is applied before each hidden layer which

aids in learning quicker and more general representations. At test time dropout is not applied.

2.1.2 MOS: Bias Corrected Spatial Disaggregation

BCSD [[125]] is widely used in the downscaling community due to its simplicity [[2, 12, 124, 84]].

Most commonly, GCM data is bias corrected followed by spatial disaggregation on monthly data

and then temporally disaggregated to daily projections. Temporal disaggregation is performed by

selecting a month at random and adjusting the daily values to reproduce it’s statistical distribution,

ignoring daily GCM projections. Thrasher et al. presented a process applying BCSD directly to

daily projections [[109]], removing the step of temporal disaggregation. We apply the following

steps to downscale the reanalysis precipitation dataset:

1) Bias correction of daily projections using observed precipitation. Observed precipitation is

remapped to match the reanalysis grid. For each day of the year values are pooled, ± 15 days,

from the reanalysis and observed datasets to build a quantile mapping. With the quantile mapping

computed, the reanalysis data points are mapped, bias corrected, to the same distribution as the

observed data. When applying this method to daily precipitation detrending the data is not necessary

because of the lack of trend and is therefore not applied.

2) Spatial disaggregation of the bias-corrected reanalysis data. Coarse resolution reanalysis is

then bilinearly interpolated to the same grid as the observation dataset. To preserve spatial details
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of the fine-grained observations, the average precipitation of each day of the year is computed from

the observation and set as scaling factors. These scaling factors are then multiplied to the daily

interpolated GCM projections to provide downscaled GCM projections.

2.1.3 Hybrid: Bias Corrected Spatial Disaggregation with MSSL (BCSD-MSSL)

To further understand the use of BCSD in Statistical Downscaling, we propose a technique to esti-

mate the errors introduced in BCSD. As presented above, BCSD utilizes a relatively simple quantile

mapping approach to statistical downscaling following by interpolation and spatial scaling. Follow-

ing the BCSD estimates of the observed climate, we compute the presented errors, which may be

consistent and have a predictive signal. Modeling such errors using the transfer function approaches

above, such as MSSL, may uncover this signal and improve BCSD projections. To apply this tech-

nique, the following steps are taken:

1. Apply BCSD to the coarse scale climate variable and compute the errors.

2. Excluding a hold out dataset, use MSSL where they predictand is the computed errors and

the predictands are from a different set of climate variables, such as Temperature, Wind, Sea

Level Pressure, etc.

3. Subtract the expected errors modeled by step 2 from BCSD projections in step 1.

The transfer function learned in step 2 is then applicable to future observations.

2.2 Data

The Northeast United States, a region with increasing climate extremes [[108, 57]], is selected to

compare the seven SD approaches presented above. As studied by Thibeault and Seth, the northeast

has experienced increased heavy precipitation days which is expected to continue under climate

change [[108]]. Similarly, Tryhorn et al. found similar increases in extreme precipitation but found

that agreement varied between downscaling methods [[112]]. Hence, this region provides a good

testbed for comparing SD methods for daily precipitation.
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2.2.1 United States Unified Gauge-Based Analysis of Precipitation

High resolution gridded precipitation datasets often provide high uncertainties due to a lack of gauge

based observations, poor quality control, and interpolation procedures. Fortunately, precipitation

gauge data in the continental United States is dense with high temporal resolution (hourly and

daily). The NOAA Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Precipitation

exploits the dense network of rain gauges to provide a quality controlled high resolution (0.25◦ by

0.25◦) gridded daily precipitation dataset from 1948 to the current date. State of the art quality

control [[19]] and interpolation [[127]] techniques are applied giving us high confidence in the data.

We select all locations within the Northeastern United States watershed.

2.2.2 NASA Modern-Era Retrospective Analysis for Research and Applications 2 (MERRA-

2)

Reanalysis datasets are often used as proxies to GCMs for statistical downscaling when comparing

methods due to their low resolution gridded nature with a range of pressure levels and climate vari-

ables. Uncertainties and biases occur in each dataset, but state-of-the-art reanalysis datasets attempt

to mitigate these issues. NASA’s MERRA-2 reanalysis dataset [[93]]was chosen after considera-

tion of NCEP Reanalysis I/II [[56]] and ERA-Interm [[25]] datasets. [[69]] showed the reduced

bias of MERRA and ERA-Interm over NCEP Reanalysis II, which is most often used in SD stud-

ies. MERRA-2 provides a significant temporal resolution from 1980 to present with relatively high

spatial resolution (0.50◦ by 0.625◦).

Only variables available from the CCSM4 GCM model are selected as covariates for our SD

models. Temperature, vertical wind, horizontal wind, and specific humidity are chosen from pres-

sure levels 500hpa, 700hpa, and 850hpa. At the surface level, temperature, sea level pressure, and

specific humidity are chosen as covariates. To most closely resemble CCSM4, each variable is

spatially upscaled to 1.00◦ to 1.25◦ at a daily resolution. A large box centralized around the North-

eastern Region ranging from 35◦N to 50◦N latitude and 110◦W to 50◦W longitude is used for each

variable. When applying the BCSD model, we use a spatially upscaled Land Precipitation MERRA-

2 Reanalysis dataset at a daily temporal resolution. Bilinear interpolation is applied over the coast

to allow for quantile mapping of coastal locations as needed.
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2.3 Experiments and Evaluation

In-depth evaluation of downscaling techniques is crucial in testing and understanding their cred-

ibility. The implicit assumptions in SD must be clearly understood and tested when applicable.

Firstly, SD models assume that the chosen predictors credibly represent the variability in the pre-

dictands. This assumption is partially validated through the choice of predictors presented above,

which physically represents variability of precipitation. The remainder of the assumption must be

tested through experimentation and statistical tests between downscaled projections and observa-

tions. The second assumption then requires the statistical attributes of predictands and predictors to

be valid outside of the data using for statistical modeling. A hold out set will be used to test the fea-

sibility of this assumption at daily, monthly, and annually temporal resolutions. Third, the climate

change signal must be incorporated in the predictors through GCMs. Predictands chosen for this

experiment are available through CMIP5 CCSM4 simulations. It is understood that precipitation is

not well simulated by GCMs and therefore not used in ASD models [[97]].

To test these assumptions, we provide in-depth experiments, analysis, and statistical metrics

for each method presented above. The years 1980-2004 are used for training and years 2005-2014

are used for testing, taken from the overlapping time period of MERRA-2 and CPC Precipitation.

For each PP method, we chose all covariates from each variable, pressure level, and grid point

presented above, totaling 12,781 covariates. Each method applies either dimensionality reduction

or regularization techniques to reduce complexity of this high dimensional dataset, as presented

in Section 2.1. Separate models are trained for each season (DJF, MAM, JJA, SON) and used to

project the corresponding observations.

Analysis and evaluation of downscaled projections aim to cover three themes:

1. Ability to capture daily anomalies.

2. Ability to respond to large scale climate trends on monthly and yearly temporal scales.

3. Ability to capture extreme precipitation events.

Similar evaluation techniques were applied in recent intercomparison studies of SD [[12, 41]].

Evaluation of daily anomalies are tested through comparison of bias (Projected - Observed), Root

Mean Square Error (RMSE), correlations, and a skill score [[89]]. The skill score presented by
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[[89]] measures how similar two probability density functions are from a range of 0 to 1 where 1

corresponds to identical distributions and is defined as:

Skill Score =
B∑
i=1

minimum(Z
(obs)
i , Z

(predicted)
i ) (2.14)

where n is the number of bins and Zi is the proportion of samples to fall in bin i. As this score

depends on bin width, the scores cannot be compared between temporal scales. Furthermore, it

should be noted that at the daily time scale this skill score may misrepresent skill because of the

skewed distribution of daily precipitation. Statistics are presented for winter (DJF), summer (JJA),

and annually to understand season credibility. Statistics for spring and fall are computed but not

presented in order to minimize overlapping climate states and simply results. Each of the measures

are computed independently in space then averaged to a single metric. Large scale climate trends

are tested by aggregating daily precipitation to monthly and annual temporal scales. The aggregated

projections are then compared using the same metrics as computed for daily anomalies [[89]]. Due

to the limited number of data points in the monthly and yearly projections, we estimate each measure

using the entire set of projections and observations.

Climate indices are used for evaluation of SD models’ ability to estimate extreme events. Four

metrics from ClimDEX (http://www.clim-dex.org), chosen to encompass a range of extremes, will

be utilized for evaluation, as presented in [[12]]. These are:

1. CWD - Annual maximum length of consecutive wet days ≥ 1mm

2. R20 - Annual number of very heavy wet days ≥ 20mm

3. RX5day - Annual consecutive maximum 5 day precip

4. SDII - Simple Daily intensity index = Annual total / precip days ≥ 1mm

Metrics will be computed on observations and downscaled estimates followed by annual (or monthly)

comparisons. For example, correlating the maximum number of consecutive wet days per year be-

tween observations and downscaled estimates measures each SD models’ ability to capture yearly

anomalies. The skill score will also be utilized to understand abilities of reproducing statistical

distributions.
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Table 2.1: Daily Projection Results (hold-out dataset with years 2005-2014). Daily statistical met-
rics averaged over space for annual, winter, and summer projections. Bias measures the directional
error from each model. Correlation (larger is better) and RMSE (lower is better) describe the mod-
els ability to capture daily fluctuations in precipitation. The skill score statistic measure the model’s
ability to estimate the observed probability distribution.

Bias (mm/day) Correlation RMSE (mm/day) Skill Score
SD Method Annual DJF JJA Annual DJF JJA Annual DJF JJA Annual DJF JJA

PCAOLS -0.89 -0.71 -1.16 0.55 0.60 0.49 7.04 5.52 7.49 0.82 0.81 0.76
ELNET -0.88 -0.66 -1.16 0.64 0.69 0.55 6.53 4.99 7.23 0.84 0.85 0.78
MSSL -1.58 -1.20 -2.05 0.62 0.64 0.54 6.81 5.49 7.43 0.92 0.90 0.88
AE -0.86 -0.59 -1.38 0.60 0.65 0.49 6.84 5.37 7.84 0.93 0.92 0.90
PCASVR 0.37 0.04 0.20 0.33 0.39 0.31 11.02 7.89 10.52 0.91 0.87 0.87
BCSD -0.44 -0.36 -0.36 0.52 0.49 0.46 7.50 6.49 8.12 0.93 0.92 0.89
BCSD-MSSL -0.16 -0.10 -0.02 0.58 0.60 0.50 6.93 5.61 7.71 0.79 0.80 0.74

2.4 Results

Results presented below are evaluated using a hold-out set, years 2005-2014. Each model’s ability

to capture daily anomalies, large scale climate trends, and extreme events are presented. Our goal

is to understand a SD model’s overall ability to provide credible projections rather than one versus

one comparisons, therefore statistical significance was not computed when comparing statistics.

2.4.1 Daily Anomalies

Evaluation of daily anomalies depends on a model’s ability to estimate daily precipitation given the

state of the system. This is equivalent to analyzing the error between projections and observations.

Four statistical measures are used to evaluate these errors: Bias, Pearson Correlation, Skill score

(Equation 2.14), and Root Mean Square Error (RMSE), as presented in Figure 2.2, Figure 2.3, and

Table 2.1). All daily precipitation measures are computed independently in space and averaged to

provide a single value. This approach is taken to summarize the measures as simply as possible.

Figure 2.2 shows the spatial representation of annual bias in Table 2.1.

Overall, methods tend to underestimate precipitation annually and seasonally with only PCASVR

overestimating. MSSL in particular underestimates daily precipitation by -1.58 mm on average

while the PCAOLS, ELNET, and AE PP approaches each have nearly 50% less bias. As expected,

the bias correction MOS approaches have much lower bias, especially when coupled with MSSL.

In Figure 2.2 we see that there is systematic bias over space for each method other than PCASVR,

which has no discernible pattern. This suggests that the support vectors for PCA are not consistent
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Figure 2.2: Each map presents the spatial bias, or directional error, of the model. White represents
no bias produced by the model while red and blue respectively show positive and negative biases.

over space.

RMSE, presented in Figure 2.3 and Table 2.1, measures the overall ability of prediction by

squaring the absolute errors. The boxplot in Figure 2.3, where the box present the quartiles and

whiskers the remaining distributions with outliers as points, shows the distribution of RMSE an-

nually over space. The sparse models of ELNET and MSSL have similar error distributions and

outperform others. This may suggest that the L1 sparsity constraints in ELNET and MSSL aid

in feature selection. While AE’s daily RMSE is similar to MSSL on average, the distribution of

errors over space, as shown in the boxplots, is much wider. The estimation of error produced by

BCSD-MSSL aids in lowering the RMSE of plain BCSD. PCAOLS reasonably minimizes RMSE

while PCASVR severely under-performs compared to all other models. Regression models applied

minimize error during optimization while BCSD does not. Seasonally, winter is easier to project

with summer being more challenging.

Correlation measures in Table 2.1 presents a high linear relationship between projections and

observations for the models ELNET (0.64 annually) and MSSL (0.62 annually). We find that BCSD

has a lower correlation even in the presence of error correction in BCSD-MSSL. PCASVR provides

low correlations, averaging 0.33 annually, but PCAOLS performs substantially better at 0.55.

The skill score is used to measure a model’s ability to reproduce the underlying distribution of
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Figure 2.3: Daily Root Mean Square Error (RMSE) is computed for each downscaling location and
method. Each boxplot presents the distribution of all RMSEs for the respective method. The box
shows the quartiles while the whiskers show the remaining distribution, with outliers displayed by
points..

observed precipitation where a higher value is better between 0 and 1. As expected, the quantile

mapping used in the BCSD produces well calibrated skill scores, though BCSD-MSSL reduces this

skill. AE produces similar distributions as BCSD while PCASVR and MSSL follow. PCAOLS

and ELNET, both simple linear models, have difficulty reproducing the observed distributions. This

suggests that non-linearity and complexity in PP approaches may better fit the underlying distribu-

tions, though as discussed above, we must be cautious when making conclusions using skill at a

daily temporal scale.

2.4.2 Large Climate Trends

A SD model’s ability to downscale extremes from reanalysis depends on both the response to ob-

served anomalies and ability to reproduce the underlying distribution. Resulting correlation mea-

sures present the response to observed anomalies, shown in Figure 2.4 and Table 2.3. We find that

BCSD has higher correlations for three metrics, namely consecutive wet days, very heavy wet days,

and daily intensity index along with a similar results from 5-day maximum precipitation. Further-

more, modeling BCSD’s expected errors with BCSD-MSSL decreases the ability to estimate the

chosen extreme indices. The non-linear methods are split, once again, with AE performing well and
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Table 2.2: Large scale projection results based on total monthly and yearly rainfall amounts. Bin
width for monthly skill is set to 10mm and 100mm on the annual scale.

Bias Correlation RMSE Skill
Time-frame Month Year Month Year Month Year

PCAOLS -27.14 -325.71 0.62 0.35 50.01 362.73 0.40 0.15
ELNET -26.80 -321.55 0.71 0.56 46.96 353.67 0.42 0.15
MSSL -48.16 -577.89 0.67 0.48 62.63 597.80 0.30 0.02
AE -26.12 -313.44 0.65 0.37 50.10 362.16 0.38 0.23
PCASVR 11.20 134.39 0.38 0.22 92.17 414.40 0.32 0.39
BCSD -13.31 -159.67 0.87 0.83 31.97 204.78 0.47 0.47
BCSD-MSSL -4.76 -57.13 0.85 0.79 31.24 155.04 0.46 0.56

PCASVR failing to capture chosen extremes. The linear methods, PCAOLS, ELNET, and MSSL,

provide similar correlative performance.

Analysis of a SD model’s ability to capture large scale climate trends can be done by aggregating

daily precipitation to monthly and annual temporal scales. In our analysis of monthly precipitation,

we compute Bias, RMSE, Skill, and Correlation independently for each month and average over all

grid points. These monthly statistics are then averaged and reported in Table 2.2. Metrics are also

computed on the annual scale as reported in Table 2.2.

As expected, the tested MOS methods outperformed PP methods for large scale trends as the

underlying MOS covariate is precipitation but is not used in PP approaches. We also find that

BCSD-MSSL generally improves beyond BCSD on large scale trends, likely due to inclusion of

more climate variables. Within the PP methods, PCAOLS, ELNET, and AE have similar results in

monthly and annual projections with monthly skills approaching MOS. The large negative biases

shown on the daily scale are compounded at monthly and annual scales, negatively affecting results.

In particular, MSSL Bias is 50 mm/day which shifts it’s distribution far enough to decrease skill to

0.02. This effect can be seen for the PCAOLS, ELNET, and AE. On the other hand, while PCASVR

has difficulty reducing bias and error, its predicted values cover the distribution more completely.

2.4.3 Extreme Events

A SD model’s ability to downscale extremes from reanalysis depends on both the response to ob-

served anomalies and ability to reproduce the underlying distribution. Resulting correlation mea-

sures present the response to observed anomalies, shown in Figure 2.4 and Table 2.3. We find that
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Table 2.3: Statistics for ClimDEX Indices

Correlation Skill Score
Metric CWD R20 RX5day SDII CWD R20 RX5day SDII

model
PCAOLS 0.25 0.65 0.44 0.67 0.69 0.60 0.65 0.44
ELNET 0.36 0.71 0.57 0.64 0.79 0.62 0.63 0.35
MSSL 0.33 0.84 0.56 0.52 0.90 0.63 0.57 0.16
PCASVR 0.24 0.81 0.19 0.25 0.78 0.89 0.80 0.65
AE 0.24 0.68 0.58 0.48 0.91 0.67 0.79 0.53
BCSD 0.43 0.83 0.73 0.70 0.71 0.80 0.84 0.44
BCSD-MSSL 0.25 0.83 0.70 0.69 0.41 0.75 0.84 0.08

BCSD has higher correlations for three metrics, namely consecutive wet days, very heavy wet days,

and daily intensity index along with a similar results from 5-day maximum precipitation. Further-

more, modeling BCSD’s expected errors with BCSD-MSSL decreases the ability to estimate the

chosen extreme indices. The non-linear methods are split, once again, with AE performing well and

PCASVR failing to capture chosen extremes. The linear methods, PCAOLS, ELNET, and MSSL,

provide similar correlative performance.

A skill score is used to quantify each method’s ability to estimate an indices statistical dis-

tribution, presented in Table 2.3. Contrary to correlative results, PCASVR outperforms the other

methods on two metrics, very heavy wet days and daily intensity index, with better than average

scores on the other two metrics. BCSD also performs reasonably well in terms of skill scores while

BCSD-MSSL suffers from the added complexity. MSSL estimates the number of consecutive wet

days well but is less skilled on other metrics. The very complex AE model has a reasonable ability

to capture the underlying distribution.

Figure 2.4 displays a combination of correlative power and magnitude estimate of the daily

intensity index. The SDII metric is computed from total annual precipitation and number of wet

days. A low SDII metric corresponds to either a relatively large number of estimated wet days or low

annual precipitation. We find that the on average methods underestimate this intensity. In particular,

both BCSD and BCSD-MSSL severely underestimate SDII. While PCASVR overestimates SDII,

its skill at representing the observed SDII distribution is largest (see Table 2.3).
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Figure 2.4: (Best viewed in color) The simple daily intensity index (Annual Precipitation/Number
of Precipitation Days) averaged per year.

2.5 Discussion

The ability of statistical downscaling methods to produce credible results is necessary for a mul-

titude of applications. Despite numerous studies experimenting with a wide range of models for

statistical downscaling, none have clearly outperformed others. In our study, we experiment with

the off-the-shelf applicability of machine learning advances to statistical downscaling in comparison

to traditional approaches.

Multi-task Sparse Structure learning, an approach that exploits similarity between tasks, was

expected to increase accuracy beyond automated statistical downscaling approaches. We find that

MSSL does not provide improvements beyond ELNET and other PP approaches. Furthermore, the

parameter set, estimated through cross-validation, attributed no structure aiding prediction.

The recent popularity in deep learning along with its ability to learn complex high-level repre-

sentations through autoencoding motivated us to experiment with basic architectures for statistical

downscaling. AEs benefit greatly by implicitly learning abstract non-linear features based on the

target variable. This approach had moderate success relative to the simiplier methods. More ex-
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perimentation with AEs and other deep learning architectures may provide valuable downscaling

results.

BCSD, a popular approach to statistical downscaling, outperformed the more complex models

in estimating underlying statistical distributions and climate extremes. In many cases, correcting

BCSD’s error with MSSL increased daily correlative performance but decreased skill of estimating

the distribution. From this result, we can conclude that a signal aiding in prediction was lost during

quantile mapping, interpolation, or spatial scaling. Future work may study and improve each step

independently to increase overall performance.

Of the seven statistical downscaling approaches studied, the traditional BCSD and PP meth-

ods outperformed Support Vector Regression, while downscaling daily precipitations. We find that

BCSD is skilled at estimating the statistical distribution of daily precipitation, generating better esti-

mates of extreme events. The expectation of AE and MSSL, two recent machine learning advances

which we found most applicable to statistical downscaling, to outperform basic modeled proved

false. Improvements and customization of machine learning methods is needed to provide more

credible projections. In the next chapter, we present a new approach to statistical downscaling using

deep learning based image super-resolution.
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Chapter 3

DeepSD: Generating High Resolution

Climate Change Projections through Single

Image Super-Resolution

3.1 Introduction

The lack of explicit spatial models in SD of ESMs motivated us to study the applicability of com-

puter vision approaches, most often applied to images, to this problem. More specifically, advances

in single image super-resolution (SR) correspond well to SD, which learns a mapping between low-

and high-resolution images. Moreover, as SR methods attempt to generalize across images, we aim

to provide downscaled climate projections to areas without high-resolution observations through

what may be thought of as transfer learning. Though we will discuss this topic further in section 4

(Related Work), we found that super-resolution convolutional neural networks were able to capture

spatial information in climate data to improve beyond existing methods.

Lastly, we present a framework using our super-resolution approach to downscale ensemble

ESMs over the Continental United States (CONUS) at a daily temporal scale for four emission sce-

narios by using NASA’s Earth Exchange (NEX) platform. NEX provides a platform for scientific

collaboration, knowledge sharing and research for the Earth science community. As part of NEX,

along with many other earth science data products, NASA scientists have already made monthly
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downscaled ESMs for CONUS up to the year 2100 at 30 arc seconds (NEX-DCP30) that are openly

available to the public. However, the downscaling methodology, bias correction spatial disaggrega-

tion, has limitations and the monthly scale reduces the applicability to studying extreme events. The

improvement of such data products is vital for scientists to study local impacts of climate change to

resources society depends on.

3.1.1 Key Contributions

The key contributions are as follows:

• We present DeepSD, an augmented stacked super-resolution convolutional neural network for

statistical downscaling of climate and earth system model simulations based on observational

and topographical data.

• DeepSD outperforms a state-of-the-art statistical downscaling method used by the climate

and earth science communities as well as a suite of off-the-shelf data mining and machine

learning methods, in terms of both predictive performance and scalability.

• The ability of DeepSD to outperform and generalize beyond grid-by-grid predictions suggests

the ability to leverage cross-grid information content in terms of similarity of learning patterns

in space, while the ability to model extremes points to the possibility of improved ability

beyond matching of quantiles. Taken together, this leads to the new hypothesis that methods

may be able to use spatial neighborhood information to predict in regions where data may be

sparse or low in quality.

• For the first time, DeepSD presents an ability to generate, in a scalable manner, downscaled

products from model ensembles, specifically, simulations from different climate modeling

groups across the world run with different emissions trajectories and initial conditions.

• DeepSD provides NASA Earth Exchange (NEX) a method of choice to process massive cli-

mate and earth system model ensembles to generate downscaled products at high resolutions

which can then be disseminated to researchers and stakeholders.
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3.1.2 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 (Earth Science Data) presents nec-

essary data used for SD along with their associated challenges. Section 3 (Statistical Downscaling)

discusses the problem of SD. Section 4 (Related Work) discusses techniques previously applied

to SD along with an overview of super-resolution methods. Furthermore, we discuss the relation-

ships between images and climate data. Section 5 (Methodology) presents DeepSD, the augmented

stacked super-resolution convolutional neural network formulation. In section 6 (Experiments) we

compare our method to another SD technique and three off-the-shelf machine learning approaches

and outline the process by which we will scale our method to many climate model simulations. In

section 7 (conclusion) we briefly discuss results, limitations, and future work.

3.2 Earth Science Data

Earth science data stems from a variety of areas, including climate simulations, remote sensing

through satellite observations, and station observations. The spatio-temporal nature of such data

causes heavy computational and storage challenges. For instance, a single climate variable at the

daily temporal and 4km spatial scales over only the United States requires 1.2GB of storage. Mul-

tiplying this effect over a large number of variables, including precipitation, temperature, and wind,

globally creates high storage and processing requirements. Furthermore, analysis of these complex

datasets require both technical and domain expertise.

ESM outputs, as discussed previously, are one form of earth science data which is crucial to the

understanding of our changing climate. The most recent ESMs are a product of the fifth phase of the

Coupled Model Intercomparision Project which simulate the climate through a dynamical system

coupling effects from the atmosphere, land, and ocean [106]. However, it is well understood that

holes in these models exist, including low-resolution and lack of model agreement, particularly for

precipitation [97].

We can harness information in observational datasets in order to learn statistical models map-

ping ESM outputs to a higher resolutions. Observational datasets are available through a variety

of sources, including satellite observations, station observations, and a mixture of both, namely re-

analysis datasets. Often, SD models are built to downscale ESMs directly to a observational station
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Figure 3.1: Prism Observed Precipitation: A) Low resolution at 1.0◦ (∼ 100km). B) High resolution
at 1/8◦ (∼ 12.5km).

while others aim to downscale to a grid based dataset. Gridded observational datasets are often

built by aggregating station observations to a defined grid. For example, in our application, we

obtain precipitation through the PRISM dataset at a 4km daily spatial resolution which aggregates

station observations to a grid with physical and topographical information [22]. We then upscale

the precipitation data to 1/8◦ ( 12.5 km) as our high-resolution observations. Following, we upscale

further to 1◦ corresponding to a low-resolution precipitation, as applied in [90]. The goal is then to

learn a mapping between our low-resolution and high-resolution datasets.

Furthermore, topography has large effects on weather and climate patterns with lower tempera-

tures, more precipitation, and higher winds [22, 23]. Taking advantage of the valuable topographical

information at different scales, where 1/2◦ may capture large scale weather patterns while 1/8◦ spa-

tial resolution can capture high-resolution precipitation biases.

Each of the earth science data products discussed inherently possess rich spatial dependencies,

much like images. However, traditionally statistical downscaling methods, particularly regression

based models, vectorize spatial data, removing this spatial structure. While colored images con-

tain channels consisting of, for example, red, green, and blue, climate data may be represented
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analogously such that the channels correspond to climate variables and topographical data. Sim-

ilar approaches have been applied to satellite datasets for image classification [7] and resolution

enhancement [130]. Though climate data is more complex than images due to it’s dynamics and

chaotic nature, we propose that this representation allows scientists to approach the data in an un-

conventional manner and apply augmented models developed for image processing.

3.3 Statistical Downscaling

SD is the problem of mapping a low-resolution climate variable to a high-resolution projection.

This mapping, which must transform a single grid point to multiple points is an ill-posed problem,

one with many possible solutions (see Figure 4.2). However, we can mitigate the ill-posed problem

by including static high-resolution topography data in conjunction with other low-resolution cli-

mate variables. We learn the SD model using observed climate datasets and then infer downscaled

ESM projections. Spatial and temporal non-stationarity of the changing climate system challenges

traditional statistical techniques. Downscaling precipitation further challenges these methods with

sparse occurrences and skewed distributions. The combination of an ill-posed problem, uncertainty

in the climate system, and data sparsity propagates uncertainty in downscaled climate projections

further.

3.4 Related Work

As mentioned previously, SD has a rich and expansive history in the climate community. SD con-

sists of three fundamental categories: regression models and weather classification schemes which

improve spatial resolution while weather generators increase temporal resolution (ie. monthly to

daily) [121]. As our interest is in increasing spatial resolution we will review regression methods

and weather classification.

Regression methods applied to SD are wide in scope, both linear and non-linear, and vary based

on the specific climate variable and temporal scale. For instance, downscaling daily precipitation,

which we will focus on, relies on a sparse observational dataset where few days contain rainfall

while the amount of rainfall in those days follow a skewed distribution. Automated Statistical
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Downscaling (ASD) presents a traditional framework for this problem where a classification model

is first used to classify days with precipitation followed by a regression to estimate the amount [46].

Similar approaches, among others, include quantile regression neural networks [15], bayesian model

averaging[132], and expanded downscaling[11]. Each of these regression models learns a statistical

relationship between observed low- and high-resolution pairs and is then applied to ESMs. An-

other widely used approached is Bias Corrected Spatial Disaggregation (BCSD), which begins by

bias correcting a ESM to match the distribution of the high-resolution observed dataset followed by

interpolation and spatial scaling to correct for local biases[124, 109]. Though BCSD is a simple

approach, it has been shown to perform well compared to more complex methods [12, 83]. Fur-

thermore, we have shown that BCSD performs similarly, or better, when compared to off-the-shelf

ASD approaches [115].

Weather classification methods take a different approach to statistical downscaling through near-

est neighbor estimates, grouping weather events into similar types. Given a set of observed low- and

high-resolution pairs, one can compute a distance measure between an ESM and the low-resolution

observations to select the nearest high-resolution estimate. Constructed analogues furthers the

method by performing a regression on a group of the nearest neighbor estimates[48]. More ad-

vances, but similar approaches, have recently been presented, including Hierarchical Bayesian in-

ference models[78].

While the approaches discussed above are often sufficient in downscaling means, they tend to

fail at downscaling extreme events. For instance, ASD approaches perform reasonably well at down-

scaling average precipitation [46] but performs poorly at the extremes [12]. As discussed by Bürger

et al. [12] and Mannshardt-Shamseldin et al. [77], as well as others, specific approaches to down-

scaling extremes are often required. These specialized approaches, such as those using Generalized

Extreme Value theory, have been developed for this purpose [77, 45]. Ideally, a single approach to

downscaling leveraging all available information would capture both averages and extremes, giving

the user a more credible dataset.

To our knowledge little work has been attempted to explicitly capture spatial properties for

improving downscaled projections. As computer vision approaches are built to exploit the spatial

structure of images, we are motivated to understand the applicability of such methods to climate

datasets. As introduced previously, we represent climate variables as channels, analogous to im-
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ages, and model them similarly. However, we note that this presents an analogy and not a direct

correspondence.

Using the analogy between climate datasets and images, we can relate statistical downscaling

to image super-resolution, where one aims to learn a mapping from low- to high-resolution image

pairs. Specifically, single image super-resolution (SR), as the name suggests, increases the resolu-

tion of a single image, rather than multiple images, from a scene.

The most successful approaches to SR have been shown to be patch based (or example-based)

techniques, achieving state-of-the-art performance [111, 26, 120]. Originally proposed by Glas-

ner et al. [38], patch based methods exploit self-similarity between images to produce exemplar

patches. This approach has evolved into different variations of nearest neighbor techniques between

low- and high-resolution patches through what is known as dictionary learning [30, 17, 129]. Dic-

tionary learning approaches to SR are analogous to those presented by weather classification SD

schemes. Furthermore, approaches including kernel regression [128], random forests[99], and an-

chored neighborhood regression [111], have been proposed for SR to improve accuracy and speed,

all related to methods presented in SD literature [36, 14, 104]. Sparse-coding techniques, a form of

dictionary learning, have recently shown state-of-the-art results in both speed and accuracy [111].

Convolutional neural networks were recently presented as a generalization of sparse coding,

improving upon past state-of-the-art performances[26, 120]. The sparse coding generalization, non-

linearity, network flexibility, and scalability to large datasets presents an opportunity to apply Super

Resolution Convolutional Neural Networks to SD[26].

3.5 Methodology

This section begins by describing and formulating Super-Resolution Convolutional Neural Net-

works (SRCNN), as presented by [26]. We then introduce a stacked SRCNN architecture such that

the output of one SRCNN is the input to the following SRCNN. DeepSD, the adaptation of a stacked

SRCNNs to SD, is then introduced.
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Figure 3.2: Augmented SRCNN Architecture. From the left to right: Precipitation and Elevation
sub-image pair, filters learned in layer 1, layer 1 activations, layer 2 filters, layer 2 activations, layer
3 filters, and HR precipitation label.

3.5.1 Super-resolution CNN

SR methods, given a low-resolution (LR) image, aim to accurately estimate a high-resolution image

(HR). As presented by Dong et al. [26], a CNN architecture can be designed to learn a functional

mapping between LR and HR using three operations, patch extraction, non-linear mappings, and

reconstruction. The LR input is denoted as X while the HR label is denoted as Y.

A three layer CNN is then constructed as follows to produce a high resolution estimate and

presented in Figure 3.2. Layer 1 is formulated as

F1(X) = max(0,W1 ∗X +B1),

where ‘∗’ is the convolution operation and the max operation applies a Rectified Linear Unit [86]

while W1 and B1 are the filters and biases, respectively. W1 consists of n1 filters of size c × f1 ×

f1. The filter size, f1 × f1, operates as an overlapping patch extraction layer where each patch is

represented as a high-dimensional vector.

Correspondingly, layer 2 is a non-linear operation such that

F2(X) = max(0,W2 ∗ F1(X) +B2)

whereW2 consists of n2 filters of size n1×f2×f2 andB2 is a bias vector. This non-linear operation
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maps high-dimensional patch-wise vectors to another high-dimensional vector.

A third convolution layer is used to reconstruct a HR estimate such that

F (X) = W3 ∗ F2(X) +B3.

Here, W3 contains 1 filter of size n2 × f3 × f3. The reconstructed image F (X) is expected to be

similar to the HR image, Y

This end-to-end mapping then requires us to learn the parameters Θ = {W1,W2,W3, B1, B2, B3}.

A Euclidean loss function with inputs {Xi} and labels {Yi} is used where the optimization objec-

tive is defined as:

argmin
Θ

n∑
i=1

‖F (Xi; Θ)−Yi‖22 (3.1)

such that n is the number of training samples (batch size).

We note that convolutions in layers 1, 2, and 3 decrease the image size depending on the chosen

filter sizes, f1,f2, and f3. At test time, padding using the replication method is applied before the

convolution operation to ensure the size of the prediction and ground truth correspond. During

training, labels are cropped such that Y and F (Xi; Θ), without padding, are of equal size.

3.5.2 Stacked SRCNN

Traditional SR methods are built for resolution enhancements of factors from 2 to 4 while statisti-

cal downscaling conservatively requires resolution increases of factors from 8 to 12. Rather than

enhancing resolution directly to 8-12x, as SR applications typically do, we take an alternative ap-

proach. To achieve such a large resolution improvement, we present stacked SRCNNs such that

each SRCNN increases the resolution by a factor of s. This approach allows the model to learn

spatial patterns at multiple scales, requiring less complexity in the spatial representations. The ap-

proach of stacking networks has been widely used in deep learning architectures, including stacked

denoising autoencoders [117] and stacked RBMs for deep belief networks [52]. However, contrary

to the above networks where stacking is applied in an unsupervised manner, each SRCNN is trained

independently using their respective input/output resolutions and stacked at test time.

A similar approach using cascading super-resolution networks showed positive results for up-
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Figure 3.3: Layer by layer resolution enhancement from DeepSD using stacked SRCNNs. Top
Row: Elevation, Bottow Row: Precipitation. Columns: 1.0◦, 1/2◦, 1/4◦ and 1/8◦ spatial resolutions.

scaling factors below 4 [120], however through experimentation we found that cascading SRCNNs

performed worse than stacked SRCNNs. The ability of arbitrarily upscaling ground truth images

to lower resolution allows for input/output pairs to be produced at multiple scales to train stacked

SRCNNs. However, while training a cascading model, the output of each SRCNN is the input to the

following SRCNN, which may be leading to unnecessary error propagation through the network.

3.5.3 DeepSD

We now present DeepSD, an augmented and specific architecture of stacked SRCNNs, as a novel

SD technique. When applying SR to images we generally only have a LR image to estimate a HR

image. However, during SD, we may have underlying high-resolution data coinciding with this LR

image to estimate the HR images. For instance, when downscaling precipitation we have two types

on inputs including LR precipitation and static topographical features such as HR elevation and

land/water masks to estimate HR precipitation. As topographical features are known beforehand at

very high resolutions and generally do not change over the period of interest they can be leveraged at

each scaling factor. As done when training stacked SRCNNs, each SRCNN is trained independently

with it’s associated input/output pairs. As presented in figure 3.3, inference is executed by starting

with the lowest resolution image with it’s associated HR elevation to predict the first resolution

enhancement. The next resolution enhancement is estimated from the previous layer’s estimate and

it’s associated HR elevation. This process is repeated for each trained SRCNN. Figure 3.3 illustrates

this process with a precipitation event and it’s various resolution improvements. We see that this

stacked process allows the model to capture both regional and local patterns.
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3.6 Application of DeepSD

Though high resolution precipitation is crucial to climate adaptation, it makes up two of the four

major holes in climate science [97]. Furthermore, both statistical and dynamical downscaling ap-

proaches have been shown to add little information beyond coarse ESMs when applied to precipi-

tation [63, 12]. This motivates our application to downscale daily precipitation over the CONUS, a

region where data is credible and abundant at high resolutions. As presented above, we use daily

precipitation from the PRISM dataset [22] and elevation from Global 30 Arc-Second Elevation Data

Set (GTOPO30) provided by the USGS. These datasets are used to train and test DeepSD, which

we compare to BCSD, a widely used statistical downscaling technique, as well as three off-the-

shelf machine learning regression approaches. The years 1980 to 2005 were used for training (9496

days) while the years 2006 and 2014 (3287 days) were used for testing. Lastly, we present a scal-

able framework on the NASA Earth Exchange (NEX) platform to downscale 20 GCMs for multiple

emission scenarios.

3.6.1 Training DeepSD

Our experiments downscale daily precipitation from 1.0◦ to 1/8◦, an 8x resolution enhancement,

using three SRCNN networks each providing a 2x resolution increase (1.0◦ → 1/2◦ → 1/4◦ →

1/8◦). For comparison and experimentation purposes, we also trained a single network with 8x

resolution increase which we denote as SRCNN in the results.

Data preprocessing

Data for a single day at the highest resolution, 1/8◦, covering CONUS is an “image” of size

208x464. Precipitation and elevation are used as input channels while precipitation is the sole

output. Images are obtained at each resolution through up-sampling using a bicubic interpolation.

For instance up-sampling to 1.0◦ decreases the image size from 208x464 to 26x58. Precipitation

features for the first SRCNN, downscaling from 1.0◦ to 1/2◦, are first up-sampled to 1.0◦ and then

interpolated for a second time to 1/2◦ in order to correspond to the output size of 52x116. This pro-

cess is subsequently applied to each SRCNN depending on it’s corresponding resolution. During

the training phase, 51x51 sub-images are extracted at a stride of 20 to provide heterogeneity in the
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Bias Corr RMSE Skill Runtime
Model (mm/day) (mm/day) (secs)

Lasso 0.053 0.892 2.653 0.925 1297
ANN 0.049 0.862 3.002 0.907 2015
SVM -1.489 0.886 3.205 0.342 27800
BCSD -0.037 0.849 4.414 0.955 –
SRCNN -0.699 0.894 2.949 0.833 24
DeepSD 0.022 0.914 2.529 0.947 71

Table 3.1: Comparison of predictive ability between all six methods for 1000 randomly selected
locations in CONUS. Runtime is computed as the amount of time to downscale 1 year of CONUS.

training set. The number of sub-images per year (1095, 9125, and 45,625) increase with resolution.

Features and labels are normalized to zero mean and unit variance. Precipitation values are only

available over land so we set each null value to a sufficiently low value of −5 which is then masked

after downscaling accordingly.

Training Parameters

All SRCNNs are trained with the same set of parameters, selected using those found to work well

by Dong et al. [26]. Layer 1 consists of 64 filters of 9x9 kernels, layer 2 consists of 32 filters of

1x1 filters, and the output layer uses a 5x5 kernel (see Figure 3.2). Higher resolution models which

have a greater number of sub-images may gain from larger kernel sizes and an increased number of

filters. Each network is trained using Adam optimization [67] with a learning rate of 10−4 for the

first two layers and 10−5 for the last layers. Each model was trained for 107 iterations with a batch

size of 200. Tensorflow [1] was utilized to build and train DeepSD. Training harnessed three Titan

X GPUs on an NVIDIA DIGITS DevBox by independently training each SRCNN. Inference was

then executed sequentially on a single Titan X GPU on the same machine.

3.6.2 Comparison

State-of-the-Art Methods

Bias Correction Spatial Disaggregation (BCSD) [124] is a simple but effective method for statisti-

cal downscaling. Many studies have compared BCSD to a variety of other downscaling methods

and have found good results in estimating the underlying distribution of precipitation [12]. In our

experiments we apply the daily BCSD technique [109] to precipitation over CONUS. First, the



37

25°N

30°N

35°N

40°N

45°N

12
5°W

12
0°W

11
5°W

11
0°W

10
5°W

10
0°W95

°W
90
°W

85
°W

80
°W

75
°W

70
°W

25°N

30°N

35°N

40°N

45°N

12
5°W

12
0°W

11
5°W

11
0°W

10
5°W

10
0°W95

°W
90
°W

85
°W

80
°W

75
°W

70
°W

DeepSD Bias Correction Spatial Disaggregation (BCSD)

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

m
m
/d
a
y

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

4.8

5.4

6.0

m
m
/d
a
y

Figure 3.4: Daily Root Mean Square Error (RMSE) computed at each location for years 2006 to
2014 (test set) in CONUS for Left) DeepSD and Right) BCSD. Red corresponds to high RMSE
while blue corresponds to low RMSE.

high-resolution precipitation is linearly interpolated to the low-resolution grid. Contrary to ap-

plying BCSD to ESMs, we are not required to perform quantile mapping as the distributions are

identical. Next, the low-resolution precipitation is interpolated back to high-resolution such that

the fine-grained information is lost. Then, scaling factors are computed by dividing high-resolution

observations with the interpolated data over the training set (1980-2005). Lastly, the interpolated

data is multiplied by the scaling factors to provide downscaled projections. For a more detailed de-

scription of this implementation of BCSD see [109]. The projections over the test set (2006-2014)

are then used for comparison to BCSD.

A second set of methods, Automated-Statistical Downscaling (ASD) [46], is applied to compare

a variety of regression techniques to DeepSD. ASD consists of two steps for downscaling precipi-

tation: 1. Classifying rainy/non-rainy days ( mm), 2. Estimating total precipitation on rainy days.

Hence, this approach requires both classification and regression methods. We compare three ASD

approaches using logistic and lasso regression, support vector machine (SVM) classifier and regres-

sion, and artificial neural network (ANN) classifier and regression. The Lasso penalty parameter at

each location was chosen using 3-fold cross-validation. The SVMs were trained with a linear kernel

and a penalty parameter of 1.0. Each ANN consists of a single layer of 100 units connected with

a sigmoid function. A 9 by 9 box for the LR precipitation surrounding the downscaled location is

selected as features. Each downscaled location requires individually optimized parameters making

the process computationally intensive and complex. Hence, we randomly selected 1000 locations

to downscale as a trade-off between complexity and statistical certainty around our results. All

features and labels are normalized to zero mean and unit variance.
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Bias Corr RMSE Skill1

Season Model (mm/day) (mm/day)

DJF BCSD 0.02 0.89 2.36 0.95
DeepSD -0.03 0.95 1.53 0.94

JJA BCSD 0.01 0.78 4.15 0.92
DeepSD -0.05 0.86 3.29 0.91

MAM BCSD 0.01 0.87 3.02 0.94
DeepSD -0.03 0.93 2.29 0.93

SON BCSD 0.01 0.87 3.27 0.94
DeepSD -0.04 0.93 2.31 0.94

Table 3.2: Comparison of Predictive Ability between DeepSD and BCSD for each season, Winter,
Summer, Spring, and Fall. Values are computed at each location in CONUS and averaged.

Daily Predictability

DeepSD’s ability to provide credible projections is crucial to all stakeholders. While there are many

facets to statistical downscaling, we use a few key metrics to show DeepSD’s applicability. Root

mean square error (RMSE) and Pearson’s correlation are used to capture the predictive capabilities

of the methods. Figure 3.4 maps this RMSE (mm/day) for each location. Bias, the average error,

presents the ability to estimate the mean while a skill score metric, as presented in [89], is used to

measure distribution similarity. Skill is computed as

skill =

n∑
i=1

minimum(Z(i)
o , Z(i)

m ) (3.2)

such that Zo and Zm are the observed and DeepSD’s empirical probability density function while n

is the number of bins. Hence, the skill score is between 0 and 1 where 1 is the best.

Our first experiment compares six approaches, DeepSD, SRCNN (DeepSD w/o stacking), BCSD,

Lasso, SVM, and ANN, on their ability to capture daily predictability, presented in Table 3.1. The

four metrics discussed above are computed and averaged over the 1000 randomly selected loca-

tions in CONUS where ASD methods were trained. We find that DeepSD outperforms the other

approaches in terms of bias, correlation, and RMSE and closely behind BCSD in terms of skill. We

also find that the stacking performed by DeepSD provides a large performance improvement beyond

a single SRCNN network with an 8x resolution increase. Furthermore, we find that SVM performs

poorly in testing while having the longest runtime. Similarly, the least complex ASD method, Lasso,

outperforms the more complex ANN. As expected, BCSD, a method built around estimating the un-
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Figure 3.5: Comparison of DeepSD, SRCNN, and BCSD for increasingly extreme precipitation. At
each location in CONUS, all precipitation events above a percentile threshold (x-axis) are selected.
Percentile thresholds between 90 and 99.9 are used. A) RMSE, B) Correlation, C) Bias, and D) Skill
are computed at each location and averages over CONUS. The confidence bounds of each metric
are taken from the 25th and 75th quantiles.

derlying distribution, does well in minimizing bias and estimating the underlying distribution. For

these reasons, in conjunction with our previous findings [115], the remaining experiments will limit

the methods to DeepSD and BCSD.

In the next experiment compare DeepSD and BCSD, the two scalable and top performing meth-

ods from the previous experiment, with each metric over CONUS. Each metric is computed per loca-

tion and season using the daily observations and downscaled estimates then averaged over CONUS,

as presented in Table 3.2. We find that DeepSD has high predictive capabilities for all seasons,

higher correlation and lower RMSE, when compared to BCSD. Similar results are shown in Fig-

ure 3.4 where DeepSD has a lower RMSE than BCSD for 79% of CONUS. Furthermore, we find

each method’s ability to estimate the underlying distribution well with low bias, < 0.5 mm/day,

and a high skill score of ∼ 0.98. As BCSD is built specifically to minimize bias and match the

underlying distribution, DeepSD’s performance is strong. Overall, DeepSD outperforms BCSD for

the chosen set metrics.
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Predicting Extremes

As discussed in section 4, downscaling both averages and extreme events with a single method is

challenging. Our last experiment tests this challenge by comparing DeepSD’s ability to estimate

extreme precipitation events when compared to BCSD, an approach shown to perform well [12]. A

varying quantile threshold approach is used to test each methods ability to capture extreme events.

For instance, given a downscaled location we compute RMSE, correlation, bias, and skill for all pre-

cipitation events greater the 90th percentile. This is done for a range of percentiles between 90 and

99.9 and averaged over all locations in CONUS. Along with the mean, we select the 25th and 75th

quantiles of each metric over CONUS and plot them as confidence bounds in Figure 3.5. Figure 3.5

presents BCSD’s loss of predictive capability when compared to DeepSD. We find that BCSD over-

estimates extremes at upper quantiles while DeepSD is relatively stable. Though RMSE, Corr, and

Skill becomes worse at these extremes, DeepSD consistently outperforms BCSD, most often with

thinner confidence bounds. These results show DeepSD’s ability to perform well for increasingly

extreme precipitation events. DeepSD’s performance is impressive given that literature has shown

that traditional techniques tend to fail when downscaling averages and extremes simultaneously. We

hypothesize that capturing nearby spatial information allows DeepSD to isolate areas where extreme

precipitation events are more likely than others.

3.6.3 Scalability on NASA’s NEX

Comprehensive studies of climate change requires much more than a single ESM simulation but

rather multiple projections from different models, emission scenarios, and initial conditions in or-

der to capture uncertainty. In total, CMIP5 contains more than 20 models at 4 emission scenarios

(Representative Concentration Pathways (RCPs) 2.6,4.5,6.5,8.6), a variable number of initial con-

ditions, and multiple climate variables at a daily temporal resolution. Generally, each prospective

projection is available from 2006 to 2100 while retrospective projections are available from 1850 to

2005. Limiting the downscaled projections to encompass CONUS at 1/8◦ × 1/8◦, a single simula-

tion requires 134MB. Following the current timeframes of downscaled projections on NASA’s NEX

platform, downscaling from the year 1950 to 2005 requires 7.4GB of storage while each prospec-

tive run needs 13GB. Hence, the final dataset size is 1.2TB. When downscaled further to PRISM’s
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native resolution, 1/16◦×1/16◦, the dataset size increases to approximately 5TB. Furthermore, the

dataset scales linearly as more variables are added, including temperature minimum and maximum.

We test computational scalability by computing the amount of time taken to downscale 1 year of

CONUS, presented in Table 3.1. For DeepSD, this includes the 3 feed-forward processes and their

corresponding interpolations computed on a single GPU in NVIDIA DIGITS DevBox. Runtime for

each of the ASD methods is estimated and scaled from the length of time to downscale the 1000

selected locations using 40 CPUs in parallel (Intel Xeon CPU E5-2680 2.8GHz). BCSD’s runtime is

computed as the amount of time taken to quantile map, interpolate, and scale a years worth of data.

We find that BCSD and DeepSD widely outperform the ASD approaches. While BCSD provides

the quickest runtime, DeepSD is still scalable.

Though DeepSD is a highly scalable method, due to a single feed-forward neural network archi-

tecture, generating such large datasets still requires heavy computational power. However, storage

and compute resources are satisfied by dedicated access to the Pleiades supercomputer housed in

NASA’s Advanced Supercomputer Division (HECC) at NASA Ames. High resolution projections

can be quickly computed using GPU’s, which are available on each node, in coordination with the

Message Passing Interface (MPI). High-resolution projections are then stored on NEX’s filesystem

which has currently 2.3PB of rapid-access storage in addition to large scale tape storage accessi-

ble on the HECC platform. In this paper we present a methodology for statistical downscaling,

DeepSD, that leverages recent advances in image super-resolution and convolutional neural net-

works. DeepSD differs from previous SD methods by explicitly capturing spatial structure while

improving scalability. A brief comparison with baseline SD techniques, BCSD and ASD, shows

promising results in predictive capabilities when downscaling precipitation over the continental

United States. Lastly, we describe how DeepSD can be scaled using NASA’s Earth Exchange plat-

form to provide an ensemble of downscaled climate projections from more than 20 ESMs.

3.7 Discussion

Though DeepSD shows promise for SD, there are still some limitations in our experimentation re-

garding spatial and temporal generalization. An advantage of DeepSD is that a single trained model

is able to downscale spatial heterogeneous regions. However, we do not test predictability in regions
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where the model was not trained. Future work will examine this hypothesis to understand DeepSD’s

credibility in regions with few observations. Second, we do not test temporal non-stationarity, a

longstanding problem in statistical downscaling. Evaluation under non-stationarity can be tested

using approaches presented by Salvi et al. [96], such that training and testing data is split between

cold/warm years. As there is a single model for all locations, including cold and warm climates, we

hypothesize that DeepSD is capable of capturing non-stationarity.

Furthermore, future work can improve multiple facets of DeepSD. For instance, the inclusion

of more variables such as temperature, wind, and humidity at different pressure levels of the atmo-

sphere may capture more climate patterns. Also, downscaling multiple climate variables simultane-

ously could be explored to find similar spatial patterns in the high-resolution datasets, such as high

temperatures and increased precipitation. Most importantly, DeepSD fails to capture uncertainty

around its downscaled projections, a key factor in adapting to climate change. Recent advances in

Bayesian Deep Learning concepts [32] are presented in the following chapter to allow us to quantfy

uncertainty in deep networks.
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Chapter 4

Quantifying Uncertainty in

Discrete-Continuous and Skewed Data

with Bayesian Deep Learning

Science and Engineering (S&E) applications are beginning to leverage the recent advancements in

artificial intelligence through deep learning. In climate applications, deep learning is being used

to make high-resolution climate projections [116] and detect tropical cyclones and atmospheric

rivers [91]. Remote sensing models such as DeepSAT [7], a satellite image classification frame-

work, also leverage computer vision technologies. Physicists are using deep learning for detecting

particles in high energy physics [5] and in transportation deep learning has aided in traffic flow pre-

diction [74] and modeling network congestion [75]. Scientists have even used convolutional neural

networks to approximate the Navier-Stokes equations of unsteady fluid forces [85]. However, for

many of these applications, the underlying data follow non-normal and discrete-continuous distri-

butions. For example, when modeling precipitation, we see most days have no precipitation at all

with heavily skewed amounts on the rainy days, as shown in Figure 4.1. Furthermore, climate is

a complex nonlinear dynamical system, while precipitation processes in particular exhibit extreme

space-time variability as well as thresholds and intermittence, thus precipitation data cannot be as-

sumed to be Gaussian. Hence, for deep learning to be harnessed to it’s potential in S&E applications,

our models must be resilient to non-normal and discrete-continuous distributions.
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Figure 4.1: Histogram of daily precipitation on the Contiguous United States from 2006 to 2015. A)
All precipitation data points. B) Precipitation distribution on rainy days only. C) Log distribution
of precipitation on rainy days.

Uncertainty quantification is another requirement for wide adoption of deep learning in S&E,

particularly for risk management decisions. Twenty years ago, Jaeger et al. stated, “uncertainties

in climate change are so pervasive and far reaching that the tools for handling uncertainty provided

by decision analysis are no longer sufficient [55].” As expected, uncertainty has been a particular

interest of climate and computer scientists to inform social and infrastructure adaptation to increas-

ing weather extremes and natural disasters [58, 73]. For example, Kay et al. studied six different

sources of uncertainty of climate change impacts on a flood frequency model [59]. These uncertain-

ties included future greenhouse gas scenarios, global climate models (GCMs) structure and param-

eters, downscaling GCMs, and hydrological model structure and parameters. Hence, quantifying

the uncertainty from each of these processes is critical for understanding the system’s uncertainty.

This provides us with the problem of quantifying uncertainty in discrete-continuous and non-normal

distributions.

Recent work in Bayesian Deep Learning (BDL) provides a foundation for modeling uncertainty

in deep networks which may be applicable to many S&E applications [32, 34, 61, 134]. The sim-

plicity of implementing BDL on an already defined deep neural network makes it an attractive

approach. With a well-defined likelihood function, BDL is able to capture both aleatoric and epis-

temic uncertainty [61]. Epistemic uncertainty comes from noise in the model’s parameters which

can be reduced by increasing the dataset size. On the other side, Aleatoric uncertainty accounts

for the noise in the observed data, resulting in uncertainty which cannot be reduced. Examples

of aleatoric uncertainty are measurement error and sensor malfunctions. Aleatoric uncertainty can

either be homoscedastic, constant uncertainty for different inputs, or heteroscedastic, uncertainty

depending on the input. Heteroscedastic is especially important in skewed distributions, where the
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tails often contain orders of magnitude increased variability. Variants of these methods have already

been successfully applied to applications such as scene understanding [60] and medical image seg-

mentation [119].

While BDL has been applied to few domains, these models generally assume a Gaussian proba-

bility distribution on the prediction. However, as we discussed in S&E applications, such an assump-

tion may fail to hold. This motivates us to extend BDL further to aperiodic non-normal distributions

by defining alternative density functions based on domain understanding. In particular, we focus on

a precipitation estimation problem called statistical downscaling, which we will discuss in Section

2. In section 3, we review “DeepSD”, our statistical downscaling method [116], and Bayesian Deep

Learning Concepts. In section 4, we present two BDL discrete-continuous (DC) likelihood models,

using Gaussian and lognormal distributions, to model categorical and continuous data. Following

in Section 5, we compare predictive accuracy and uncertainty calibration in statistical downscaling.

Lastly, Section 6 summarizes results and discusses future research directions.

4.0.1 Key Contributions

1. A discrete-continuous bayesian deep learning model is presented for uncertainty quantifica-

tion in science and engineering.

2. We show that a discrete-continuous model with a lognormal likelihood can model fat-tailed

skewed distributions, which occur often in science and engineering applications.

3. The first model to capture heteroscedastic, and epistemic, uncertainties in statistical down-

scaling is presented.

4.1 Precipitation Estimation

4.1.1 Statistical Downscaling

Downscaling, either statistical or dynamical, is a widely used process for producing high-resolution

projections from coarse global climate models (GCMs) [47, 29, 81]. Dynamical downscaling, often
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Figure 4.2: Prism Observed Precipitation: Left) Low resolution at 64km. Right) High resolution at
16km.

referred to as regional climate models, are physics based numerical models encoding localized sub-

grid processes within GCM boundary conditions to generate high-resolution projections. Similar to

GCMs, dynamical downscaling are computational expensive and simply cannot scale to ensemble

modeling. Statistical downscaling is a relatively efficient solution which aims to use observed data

to learn a functional mapping between low- and high-resolution GCMs, illustrated in Figure 4.2.

Uncertainty in GCMs is exacerbated by both observational data and parameters in the functional

mapping, motivating a probabilistic approach.

GCMs through the Fifth Coupled Model Intercomparison Project (CMIP5) provides scientist

with valuable data to study the effects of climate change under varying greenhouse gas emission

scenarios [106]. GCMs are complex non-linear dynamical systems that model physical processes

governing the atmosphere up to the year 2200 (some to 2300). GCMs are gridded datasets with

spatial resolutions around 100km and contain a range of variables including temperature, precipita-

tion, wind, and pressure at multiple pressure levels above the earth’s surface. More than 20 research

groups around the world contributed to CMIP5 by developing their own models and encoding their

understanding of the climate system. Within CMIP5, each GCM is simulated under three or four

emission scenarios and multiple initial conditions. This suite of climate model simulations are then

used to get probabilistic forecasts of variables of interest, such as precipitation and temperature

extremes [101]. While the suite of models gives us the tools to study large scale climate trends,

localized projections are required for adaptation.

Many statistical models have been explored for downscaling, from bias correction spatial disag-

gregation (BCSD) [16] and automated statistical downscaling (ASD) [46] to neural networks [105]

and nearest neighbor models [48]. Multiple studies have compared different sets of statistical down-
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scaling approaches on various climate variables and varying temporal and spatial scales showing that

no approach consistently outperforms the others [12, 41, 115]. Recently, Vandal et al. presented

improved results with an alternative approach to downscaling by representing the data as ”images”

and adapting a deep learning based super-resolution model called DeepSD [116]. DeepSD showed

superior performance in downscaling daily precipitation in the contiguous United States (CONUS)

when compared to ASD and BCSD.

Even though uncertainty is crucial in statistical downscaling, it is rarely considered in down-

scaling studies. For instance, all the downscaled climate projections used in the latest US National

Climate Assessment report (CSSR), produced on the NASA Earth Exchange, come with no uncer-

tainty estimates. Though widely used in climate impact assessments, a recurrent complaint from

the users is a lack of uncertainty characterization in these projections. What users often request are

estimates of geographic and seasonal uncertainties such that the adaptation decisions can be made

with robust knowledge [126]. Khan et al. presented one study that assessed monthly uncertainty

from confidence based intervals of daily predictions [64]. However, this approach only quantifies

epistemic uncertainty and therefore cannot estimate a full probability distribution. To the best of the

authors’ knowledge, no studies have modeled aleatoric (heteroscedastic) uncertainty in statistical

downscaling, presenting a limitation to adaptation.

4.1.2 Climate Data

A wide variety of data sources exists for studying the earth’s climate, from satellite and observations

to climate models. Above we discussed some of the complexities and uncertainty associated with

ensembles of GCMs as well as their corresponding storage and computational requirements. While

the end goal is to statistically downscale GCMs, we must first learn a statistical function to apply

a low- to high-resolution mapping. Fortunately, one can use observed datasets that are widely

available and directly transfer the trained model to GCMs. Such observation datasets stem from

gauges, satellite imagery, and radar systems. In downscaling, one typically will use either in-situ

gauge estimates or a gridded data product. As we wish to obtain a complete high-resolution GCM, a

gridded data product is required. Such gridded-data products are generally referred to as reanalysis

datasets, which use a combination of data sources with physical characteristics aggregated to a well

estimated data source. For simplicity, the remainder of this paper we will refer to reanalysis datasets
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as observations.

In SD, it is important for our dataset to have high spatial resolution at a daily time temporal

scale spanning as many years as possible. Given these constraints, we choose to use precipitation

from the Prism dataset made available by Oregon State University with a 4km spatial resolution

at a daily temporal scale [22]. The underlying data in Prism is estimated from a combination of

gauges measuring many climate variables and topographical information. To train our model, the

data is upscaled from 4km to the desired low-resolution. For example, to train a neural network

to downscale from 64km to 16km, we upscale Prism to 16km and 64km and learn the mapping

between the two (see Figure 4.2).

For the reader, it may be useful to think about this dataset as an image where precipitation is

a channel analogous to traditional RGB channels. Similarly, more variables can be added to our

dataset which therefore increases the number of channels. However, it is important to be aware

that the underlying spatio-temporal dynamics in the chaotic climate system makes this dataset more

complex than images. In our experiments with DeepSD, we included an elevation from the Global

30 Arc-Second Elevation Data Set (GTOPO30) provided by the USGS.

4.2 Background

4.2.1 DeepSD

The statistical downscaling approach taken by DeepSD differs from more traditional approaches,

which generally do not capture spatial dependencies in both the input and output. For example

Automated Statistical Downscaling (ASD) [46] learns regression models from low-resolution to

each high-resolution point independently, failing to preserve spatial dependencies in the output and

requiring substantial computational resources to learn thousands of regression models. In contrast,

DeepSD represents the data as low- and high-resolution image pairs and adapts super-resolution

convolutional neural networks (SRCNN) [26] by including high-resolution auxiliary variables, such

as elevation, to correct for biases. These auxiliary variables allows one to use a single trained

neural network within the training domain. This super-resolution problem is essentially a pixel-

wise regression such that Y = F (X; Θ) where Y is high-resolution with input X = [Xlr,Xaux]

and F a convolutional neural network parameterized by Θ. F can then be learned by optimizing the
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loss function:

L =
1

2N

∑
i∈S
‖F (Xi; Θ)−Yi‖22 (4.1)

where S is a subset n examples. Based on recent state-of-the-art results in super-resolution [65, 72],

we modify the SRCNN architecture to include a residual connection between the precipitation input

channel and output layer, as shown in Figure 4.3.

Figure 4.3: Residual SRCNN Architecture used for DeepSD with a skip connection between pre-
cipitation and the output layer.

As discussed above, the resolution enhancement of 8x or more needed in statistical downscaling

is much greater than the 2-4x enhancements used for images. DeepSD uses stacked SRCNNs,

each improving resolution by 2x allowing the model to capture regional and local weather patterns,

depending on the level. For instance, to downscale from 100km to 12.5km, DeepSD first trains

models independently (or with transfer learning) to downscale from 100km to 50km, 50km to 25km,

and 25km to 12.5km. During inference, these models are simply stacked on each other where the

output of one plus the next corresponding auxiliary variables are inputs to the next. In the case

of downscaling precipitation, inputs may include LR precipitation and HR elevation to predict HR

precipitation. In this work, we focus on uncertainty quantification for a single stacked network

which can then be translated to stacking multiple Bayesian neural networks.

4.2.2 Bayesian Deep Learning

In the early 1990’s Mackay [76] introduced a Bayesian neural networks (BNNs) by replacing deter-

ministic weights with distributions. However, as is common with many Bayesian modeling prob-

lems, direct inference on BNNs is intractable for networks of more than a one or two hidden layers.

Many studies have attempted to reduce the computational requirements using various approxima-

tions [40, 6, 53]. Most recently, Gal and Ghahramani presented a practical variational approach to
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approximate the posterior distribution in deep neural networks using dropout and monte carlo sam-

pling [33, 32]. Kendall and Gal then followed this work for computer vision applications to include

both aleatoric and epistemic uncertainties in a single model [61].

To begin, we define weights of our neural network as ω = {W1,W2, ...,WL} such that W ∼

N (0, I) and L being the number of layers in our network. Given random outputs of a BNN denoted

by fω(x), the likelihood can be written as p(y|fω(x)). Then, given data X and Y, as defined

above, we infer the posterior p(ω|X,Y) to find a distribution of parameters that best describe the

data. For a regression task assuming a predictive Gaussian posterior, p(y|fω(x)) = N (ŷ, σ̂2) with

random outputs:

[ŷ, σ̂2] = fω(x).

Applying variational inference to the weights, we can define an approximate and tractable distri-

bution qΘ(ω) =
∏L
l=1 qMl

(Wl) where qMl
(Wl) = Ml×diag

[
Bernoulli(1−pl)Kl

]
parameterized

by Θl = {Ml, pl} containing the weight mean of shape Kl×Kl+1, Kl being the number of hidden

units in layer l, and dropout probability pl. Following, we aim to minimize the Kullback-Leibler

(KL) divergence between qΘ(ω) to the true posterior, p(ω|X,Y). The optimization objective of

the variational interpretation can be written as [33]:

L̂(Θ) = − 1

M

∑
i∈S

logp(yi|fω(xi)) +
1

N
KL(qΘ(ω)||p(ω)) (4.2)

= L̂x(Θ) +
1

N
KL(qΘ(ω)||p(ω)) (4.3)

where S is a set of M data points. To obtain well calibrated uncertainty estimates, it is crucial to

select a well estimated pl. Rather than setting pl to be constant, we can learn it using a concrete

distribution prior which gives us a continuous approximation of the Bernoulli distribution [34]. As

presented by Gal et al., the KL divergence term is then written as:
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KL(qΘ(ω)||p(ω)) =
L∑
l=1

KL(qMl
(Wl)||p(Wl)) (4.4)

KL(qMl
(W)||p(W)) ∝ l2(1− pl)

2
||Ml|| −KlH(pl) (4.5)

where

H(p) = −p log p− (1− p) log (1− p) (4.6)

is the entropy of a Bernoulli random variable with probability p. We note that given this entropy

term, the learning dropout probability cannot exceed 0.5, a desired effect. For brevity, we encourage

the reader to refer to [34] for the concrete dropout optimization. In the remainder of this paper, we

will use this concrete dropout formulation within all presented models.

4.3 Bayesian Deep Learning for Skewed Distributions

In this section we describe three candidate Bayesian deep learning models to quantify uncertainty in

super-resolution based downscaling. We begin by formalizing the use of BDL within the SRCNN

architecture assuming a normal predictive distribution, identical to the pixel-wise depth regression

in [61]. This approach is further extended to a discrete-continuous model that conditions the amount

of precipitation given an occurrence of precipitation. This leverages the domain knowledge that

the vast majority of data samples are non-rainy days which are easy to predict and contain little

information for the regression. Such a technique was used by Sloughter el al. using a discrete-

continuous gamma distribution [102]. Lastly, we show that a lognormal distribution can be applied

directly in BDL and derive its corresponding log-likelihood loss and unbiased parameter estimates.

4.3.1 Gaussian Likelihood

Super-resolution is an ill-posed pixel-wise regression problem such that BDL can be directly ap-

plied, as Kendall and Gal showed for predicting depth in computer vision [61]. As discussed in

previous sections, it is crucial to capture both aleatoric and epistemic uncertainties in downscaling.

As shown in section 3.1 of [61], we must measure the aleatoric uncertainty by estimating the vari-
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ance, σ2, in the predictive posterior while also sampling weights via dropout from the approximate

posterior, Ŵ ∼ qΘ(W). As before, we defined our Bayesian convolutional neural network f :

[ŷ, σ̂2] = fŴ(X). (4.7)

and make the assumption that Y ∼ N (ŷ, σ̂2). The Gaussian log-likelihood can be written as:

Lx(Θ) =
1

2D

∑
i

σ̂−2
i ||yi − ŷi||2 +

1

2
log σ̂2

i (4.8)

where pixel i in y corresponds to input x and D being the number of output pixels. The KL term

is identical to that in Equation 4.4. Given this formulation, σ̂i, the variance for pixel i is implicitly

learned from the data without the need for uncertainty labels. We also note that during training the

substiution si := log σ̂2
i is used for stable learning using the Adam Optimization algorithm [67], a

first-order gradient based optimization of stochastic objective functions.

Unbiased estimates of the first two moments can the be obtained with T Monte Carlo samples,

{ŷt, σ̂2
i }, from fŴ(x) with masked weights Ŵt ∼ q(W):

E[Y] ≈ 1

T

T∑
t=1

ŷt (4.9)

Var[Y] ≈ 1

T

T∑
t=1

µ̂2
t −

1

T

T∑
t=1

σ̂2
t +

( 1

T

T∑
t=1

µ̂t

)2
. (4.10)

These first two moments provide all the necessary information to easily obtain prediction intervals

with both aleatoric and epistemic uncertainties. For further details, we encourage the reader to refer

to [61].

4.3.2 Discrete-Continuous Gaussian Likelihood

Rather than assuming a simple Gaussian distribution for all output variables, which may be heavily

biased from many non-rainy days in our dataset, we can condition the model to predict whether

rain occurred or not. The BNN is now formulated such that the mean, variance, and probability of

precipitation are sampled respectively from f :
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[ŷ, σ̂2, φ̂] = fŴ(X) (4.11)

p̂ = Sigmoid(φ̂). (4.12)

Splitting the distribution into discrete and continuous parts gives us:

p
(
y|fω(x)

)
=

 (1− p̂) y = 0

p̂ · N
(
y; ŷ, σ̂2

)
y > 0

(4.13)

Plugging this in to 4.2 and dropping the constants gives us the loss function (for brevity, we ignore

the KL term which is identical to Equation 4.4):

Lx(Θ) = − 1

D

∑
i

log
(
1yi>0 · p̂i · N

(
yi; ŷi, σ̂

2
i

)
+ 1yi=0 · (1− p̂i)

)
= − 1

D

∑
i,yi>0

(
log p̂i + log N

(
yi; ŷi, σ̂

2
i

))
− 1

D

∑
i,yi=0

log(1− p̂i)

=
1

D

∑
i

(
1yi>0 · p̂i + (1− 1yi>0) · (1− p̂i)

)
− 1

2D

∑
i,yi>0

σ̂−2
i ||yi − ŷi||2 + log σ2

i

(4.14)

where the first term is the cross entropy of a rainy day and the second term is the conditional

Gaussian loss. Furthermore, we can write the unbiased estimates of the first two moments as:

E[Y] ≈ 1

T

T∑
t=1

p̂tŷt (4.15)

Var[Y] ≈ 1

T

T∑
t=1

p̂2
t

(
ŷ2
t + σ̂2

t

)
−
( 1

T

T∑
t=1

p̂tµ̂t

)2
. (4.16)
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4.3.3 Discrete-Continuous Lognormal Likelihood

Precipitation events, especially extremes, are known to follow fat-tailed distributions, such as log-

normal and Gamma distributions [102, 20]. For this reason, as above, we aim to model precipitation

using a discrete-continuous lognormal distribution. It should be noted that the lognormal distribu-

tion is undefined at 0 so a conditional is required for downscaling precipitation. To do this, we

slightly modify our BNN:

[µ̂, σ̂2, φ̂] = fŴ(X) (4.17)

p̂ = Sigmoid(φ̂). (4.18)

where µ̂ and σ̂ are sampled parameters of the lognormal distribution. Following the same steps as

above, we can define a piece-wise probability density function:

p
(
y|fω(x)

)
=


(1− p̂) y = 0

p̂ · 1

yσ̂
√

2π
exp
(
− (log(y)− µ̂)2

2σ̂2

)
y > 0

(4.19)

This gives us the modified log-likelihood objective:

Lx(Θ) =
1

D

∑
i

(
1yi>0 · p̂i + (1− 1yi>0) · (1− p̂i)

)
− 1

2D

∑
i,yi>0

σ̂−2
i ||log yi − µ̂i||2 + log σ2

i

(4.20)

In practice, we optimize ŝ := exp(σ̂) for numerical stability. And lastly, the first two moments are

derived as:

E[y] ≈ 1

T

T∑
t=1

p̂texp(µ̂+
1

2
σ̂2) (4.21)

Var[Y] ≈ 1

T

T∑
t=1

p̂2
t exp(2µ̂+ 2σ̂2) (4.22)
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Given these first two moments, we can derive unbiased estimates of µ and σ:

σ̂ = log
(

1 +
1

2

√
4Var[Y]

E[y]2
+ 1
)

(4.23)

µ̂ = E[y]− σ̂2

2
(4.24)

that can be used to compute pixel-wise probabilistic estimates. In the next section, we will apply

each of the three methods to downscaling precipitation, compare their accuracies, and study their

uncertainties.

4.4 Precipitation Downscaling

For our experimentation, we define our problem to downscale precipitation from 64km to 16km,

a 4x resolution enhancement in a single SRCNN network. We begin with precipitation from the

PRISM dataset, as presented in Section 4.1.2, at 4km which is then upscaled to 16km using bilinear

interpolation. This 16km dataset are our labels and are further upscaled to 64km, generating training

inputs. Furthermore, we use elevation from the Global 30 Arc-Second Elevation Datset (GTOPO30)

provided by the USGS as an auxilary variable, also upscaled to 16km. In the end, our dataset is

made up of precipitation at 64km and elevation at 16km as inputs where precipitation at 16km

are the labels. In the discrete-continuous models, precipitation ¿0.5mm is considered a rainy day.

Precipitation measured in millimeters (mm) is scaled by 1/100 for training when optimizing the

Gaussian models. Elevation is normalized with the overall mean and variance. The training data

is taken from years 1980 to 2005 and the test set from 2006 to 2015. Sub-images selected of size

64x64 with stride 48 are used for generating training examples.

Our super-resolution architecture is defined with two hidden layers of 512 kernels using kernel

sizes 9, 3, and 5 (see Figure 4.3). The model is trained for 3× 106 iterations using a learning rate of

10−4 and a batch size of 10. Three models are optimized using each of the three log-likelihood loss’s

defined above, Gaussian distribution as well as discrete-continuous Gaussian and lognormal distri-

butions conditioned on a rainy day. 50 Monte Carlo passes during inference are used to measure the

first two moments which then estimates the given predictive distribution’s parameters.

Concrete dropout is used to optimize the dropout probability with parameters τ=1e-5 and prior
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Figure 4.4: Dropout probabilities learned using Concrete Dropout for both hidden layers.
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Figure 4.5: Daily Root Mean Square Error (RMSE) computed at each location for years 2006 to
2015 (test set) in CONUS. A) Gaussian, B) Conditional-Gaussian, and C) Conditional-Lognormal.
Red corresponds to high RMSE while blue corresponds to low RMSE.

length scale as l = 1 to improve uncertainly calibration performance [34]. For a pixel-wise regres-

sion the number of samples N is set as Days × Height × Width. These parameters were found

to provide a good trade-off between likelihood and regularization loss terms. As shown in Fig-

ure 4.4, dropout rates for each model and hidden layer are close to 0.5, the largest possible dropout

rate. We find that the Gaussian distribution has difficulty converging to a dropout rate while the

discrete-continuous models quickly stabilize. Furthermore, the lognormal distribution learns the

largest dropout rate, suggesting a less complex model.

Validation is an important task for choosing a highly predictive and well calibrated downscaling

model. In our experiments, we study each model’s ability to predict daily precipitation, calibration

of uncertainty, and width of uncertainty intervals. For reproducibility, we provide the codes for train-

ing and testing on github (https://github.com/tjvandal/discrete-continuous-bdl).

4.4.1 Predictive Ability

We begin by comparing each model’s ability to predict the ground truth observations. Root Mean

Square Error (RMSE) and bias are compared to understand the average daily effects of downscal-

ing. To analyze extremes, we select two metrics from Climdex (http://www.clim-dex.org)
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Bias RMSE R20 Error SDII Error

Gaussian -0.11 ± 0.34 2.14 ± 1.31 -0.73 ± 1.94 -0.83 ± 0.93
DC-Gaussian -0.11 ± 0.30 2.07 ± 1.28 -0.61 ± 1.67 -0.21 ± 0.78
DC-Lognormal -0.02 ± 0.30 2.05 ± 1.27 -0.36 ± 1.63 -0.28 ± 0.81

Table 4.1: Predictive accuracy statistics computed pixel-wise and aggregated. Daily intensity index
(SDII) and yearly precipitation events greater than 20mm (R20) measure each model’s ability to
capture precipitation extremes. R20-Err and SDII-Err measures the difference between observed
indicies and predicted indicies (closer to 0 is better).

which provides a suite of extreme precipitation indices and is often used for evaluating downscaling

models [13, 115]:

1. R20 - Very heavy wet days ≥ 20mm

2. SDII - Daily intensity index = (Annual total) / (precip days ≥ 0.5 mm).

In our analysis, we compute each index for the test set as well as observations. Then the differ-

ence between the predicted indices and observed indices are computed, ie. (SDIImodel - SDIIobs).

These results can be seen in Table 4.1. We see a clear trend of the DC models performing better

than a regular Gaussian distribution on all computed metrics. In particular, DC-Lognormal shows

the lowest Bias, RMSE, and R20 error while DC-Gaussian has slightly higher errors but performs

marginally better at estimating the SDII index. Furthermore, we study the predictability over space

in Figure 4.5 by computing the pixel-wise RMSEs. Each model performs well in the mid-west and

worse in the southeast, a region with large numbers of convective precipitation events.

We see that the DC models, DC-Lognormal in particular, have lower bias than a regular Gaus-

sian distribution. Similarly for RMSE, DC models, lead by a DC-Gaussian, have the lowest errors.

Looking more closely, we see improved performance along the coasts which are generally chal-

lenging to estimate. The convolutional operation with a 5x5 kernel in the last layer reconstructs

the image using a linear combination of nearby points acting as a smoothing operation. However,

when this is applied to the conditional distributions, the gradient along this edge can be increased

by predicting high and low probabilities of precipitation in a close neighborhood. This insight is

particularly important when applied to coastal cities.

Lastly, we look at each conditional model’s ability to classify precipitous days with precision

recall curves (Figure 4.6). We see that recall does not begin to decrease until a precision of 0.8 which
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Figure 4.6: Precision recall curve of classifying rainy days in conditional models.
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Figure 4.7: Calibration is computed as the frequency of predictions within a given probability range.
This probability is varied on the x-axis with the corresponding frequency on the y-axis. Columns
represent each model Gaussian, DC-Gaussian and Lognormal. Calibration plots on the first row
compute per pixel with the shaded area representing the 80% confidence interval of calibration. The
second row depicts calibration root mean square error (RMSE) per location.

indicates very strong classification performance. It was assumed that classification of precipitation

would be easy for such a dataset.

4.4.2 Uncertainty Quantification

The remainder of our analysis focuses on each model’s performance in estimating well calibrated

uncertainty quantification. We limit our analysis of uncertainty to only days with precipitation (≥

0.5mm) as uncertainty on non-rainy days is not of interest. The calibration metric used computes
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Figure 4.8: Uncertainty widths based on quantiles from their predictive distributions. The points are
observations versus the expected value. The bands correspond to 50%, 80%, and 90% predictive
intervals.

the frequency of observations occurring within a varying predicted probability range:

c(z) =
1

N

N∑
i=1

IP (yi|fω(xi))>(0.5−z/2) ∗ IP (yi|fω(xi))<(0.5+z/2) (4.25)

where P is the cumulative density function of the predictive posterior and z ∈ [0, 1] defined the

predictive probability range centered at 0.5. Ideally the frequency of observations will be equal to

the probability. A calibration error can then be defined as:

RMSEcal =

√√√√ 1

K

K∑
i=1

(c(i/K)− i/K)2 (4.26)

whereK is the number bins. In our analysis, we useK = 100. The calibration plots for each model

can be seen in Figure 4.7.

Right away we see from Figure 4.7 that the Gaussian distribution over-estimates uncertainty

for most of the range with a wider range of variability between pixels. DC-Lognormal also over-

estimates uncertainty but has a lower range of variability between pixels, showing more consistent

performance from location to location. Overall, DC-Gaussian shows the lowest calibration error

hovering right around x = y but underestimates uncertainty at the tails. Though DC-Lognormal is

better calibrated at the tails, one could calibrate the tails by simply forcing the variance to explode.

Taking this a step further, we present calibration RMSEs per pixel in Figure 4.7 (bottom row) to vi-

sualize spatial patterns of UQ. In the Gaussian model we find weakened and more variable results at

high-elevations in the west and mid-west. Each of the DC models perform well, but DC-Lognormal
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also has areas of increased error in the west.

In Figure 4.8 we aim to better understand these uncertainties for increasingly intense precipi-

tation days. At these high rainfall days our models generally under-predict precipitation, but the

Gaussian models often fail to capture these extremes. While the lognormal has wider uncertainty

intervals, it is able to produce a well calibrated distribution at the extremes. Furthermore, these wide

intervals indicate that the model becomes less confident with decreasing domain coverage at higher

intensities. This may suggest that there exists a bias-variance trade-off between the Gaussian and

Log-Normal distributions.

4.5 Discussion

In this chapter we present Bayesian Deep Learning approaches incorporating discrete-continuous

and skewed distributions targeted at S&E applications. The discrete-continuous models contain

both a classifier to categorize an event and conditional regressor given an event’s occurrence. We

derive loss functions and moments for Gaussian and lognormal DC regression models. Using pre-

cipitation as an example, we condition our model on precipitous days and predict daily precipitation

on a high-resolution grid. Using the lognormal distribution, we are able to produce well-calibrated

uncertainties for skewed fat-tailed distributions. To our knowledge, this is the first model for uncer-

tainty quantification in statistical downscaling.

Through experiments, we find that this DC approach increases predictive power and uncertainty

quantification performance, reducing errors with well calibrated intervals. In addition, we find that

this conditional approach improves performance at the extremes, measured by daily intensity index

and number of extreme precipitation days from ClimDex. Visually, we found that the DC models

perform better than a regular Gaussian on the coasts, a challenge in statistical downscaling. These

edge errors appear during reconstruction when the kernel partially overlaps with the coastal edge,

acting as a smoothing operation. However, the DC models reduce this smoothing by increasing the

expected value’s gradients.

Overall, we find that the DC distribution approaches provides strong benefits to deep super-

resolution based statistical downscaling. Furthermore, while the lognormal distribution uncertainty

was slightly less calibrated, it was able to produce well understood uncertainties at the extremes.
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This presents a strong point, Bayesian Deep Neural Networks can well fit non-normal distributions

when motivated by domain knowledge.

In the future we aim to extend this work to stacked super-resolution networks, as used in

DeepSD [116], which requires sampling of between networks. Some other extensions could be

the addition of more variables, extension to other skewed distributions, and larger network archi-

tectures. Finally, incorporating these theoretical advances in uncertainty characterization, the NEX

team plans to use DeepSD to produce and distribute next generation of climate projections for the

upcoming congressionally mandated national climate assessment.
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Chapter 5

Conclusions and Future Work

In this thesis we present and explore a fundamentally new approach to the problem of generat-

ing high-resolution climate projections from low-resolution earth system models (ESMs) by in-

corporating recent advances in machine learning. In Chapter 1 we introduced this problem of

statistical downscaling (SD) and discussed the weaknesses of current approaches along with mo-

tivating the use of highly scalable machine learning approaches [113]. Chapter 2 continues by

exploring the applicability of off-the-shelf machine learning methods compared to state-of-the-art

SD techniques [113]. Following, in Chapter 3, a deep learning based super-resolution approach

to statistical downscaling is presented, DeepSD, and discusses improvements in predictability and

scalability [116]. Lastly, Chapter 4 develops a discrete-continuous DeepSD approach to quantify

uncertainty using Bayesian Deep Learning [114].

While methods and results presented in Chapters 3 and 4 introduce new tools for various prob-

lems in climate science and remote sensing, many limitations still exist. In particular, within the

realm of statistical downscaling, the evaluation of DeepSD on climate models projections is re-

quired for wide adoption. For instance, our results show impressive results in both in predictabil-

ity and uncertainty quantification on observed datasets, the question still remains whether such a

method can improve beyond competing SD methods and coarse resolution GCMs. This question

largely remains throughout the downscaling literature [97, 79, 92]. Non-stationarity in space and

time is a major concern in SD as we cannot be certain that a trained statistical model on historical

data can provide credible projections under climate change but few have suggested new approaches.

The development of new statistical metrics and analysis tools are required to understand the added
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value of SD to GCMs [96, 92]. Furthermore, a comparison of the developed SD methods to impact

studies would be valuable.

The development of machine learning methods for climate science is also a crucial aspect to

improving and using climate model projections. The super-resolution literature consists of a variety

of approaches from very deep networks [65] to generate adverserial networks (GANs) [72]. GANs

in particular could provide tremendous improvements to projecting realistic weather events such as

tropical storms and other highly variable climate variables. Developments in Bayesian Deep Learn-

ing will continue to improve and present a greater number of tools for uncertainty quantification

throughout climate science.
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